Skip to main content

Turbulent Flow and Modeling in Turbomachinery

  • Chapter
  • First Online:
Book cover Turbomachinery Flow Physics and Dynamic Performance
  • 5941 Accesses

Abstract

The preceding Chapter dealt with stability of laminar flows, their perturbation and transition to the turbulent state. In discussing the transition process, we prepared the essentials for better understanding the basic physics of the more complex turbulent flow, which is still an unresolved and extremely challenging problem in fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor, G.I.: Diffusion by Continuous Movements. Proc. London Math. Soc. Ser2 20, 196–211 (1921)

    Article  MATH  Google Scholar 

  2. von Kármán, T.: Aeronaut. Sci. 4, 137 (1937)

    Google Scholar 

  3. Hinze, J.O.: Turbulence, 2nd edn. McGraw-Hill, New York (1975)

    Google Scholar 

  4. Rotta, J.C.: Turbulente Strömungen. B.C.Teubner-Verlag, Stuttgart (1972)

    MATH  Google Scholar 

  5. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  6. Kolmogorov, A.N.: Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number. Doklady Akademia Nauk, SSSR 30, 299–303 (1941)

    Google Scholar 

  7. Grant, H., Stewart, H.R.W., Moilliet, A.: Turbulence Spectra from a Tidal Channel. J. Fluid Mech. 12, 241 (1962)

    Article  MATH  Google Scholar 

  8. Onsager, L.: Phys. Rev. 68, 286 (1945)

    Google Scholar 

  9. Weizsäcker, C.F.: 1948, Zeitschrift Physik 124, 628, also proc. Roy. Soc. London 195A, 402 (1948)

    Google Scholar 

  10. Bradshaw, P., Perot, J.B.: A note on turbulent energy dissipation in the viscous wall region. Physics of Fluids A 5, 3305 (1993)

    Article  Google Scholar 

  11. Launder, B.E., Reece, G.I., Rodi, W.: Progress in the Development of Reynolds-Stress Turbulent Closure. J. of Fluid Mechanics 68, 537–566 (1975)

    Article  MATH  Google Scholar 

  12. Launder, B.E., And Spalding, D.B.: The Numerical Computation of Turbulent Flows. Comp. Method in Applied mechanics and Engineering 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  13. Boussinesq, J.: Mé. pré. par. div. savants á l’ acad. sci. Paris, 23, 46 (1887)

    Google Scholar 

  14. Prandtl, L.: Über die ausgebildete Turbulenz. ZAMM 5, 136–139 (1925)

    MATH  Google Scholar 

  15. Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  16. Wilcox, D.: 1993, Turbulence Modeling for CFD. DCW Industries, Inc., 5354Palm Drive, La Ca. nada, California 91011 (1993)

    Google Scholar 

  17. Müller, T.: Untersuchungen von Geschwindigkeitsprofilen und deren Entwicklung in Strömungsrichtung in zweidimensionalen transitionalen Grenzschichten anhand eines Geschwindigkeitsmodells. Dissertation, Technische Hochschule Darmstadt, Germany D 17 (1991)

    Google Scholar 

  18. Van Driest, E.R.: Turbulent Boundary Layer in Compressible Fluids. Journal of Aeronautical Sciences 18, 145–160, 216 (1951)

    MATH  Google Scholar 

  19. Kays, W.M., Moffat, R.J.: The behavior of Transpired Turbulent Boundary layers. Studies in Convection, vol. 1: Theory, Measurement and application. Academic Press, London (1975)

    Google Scholar 

  20. Smith, A.M.O., Cebeci, T.: Numerical solution of the turbulent boundary layer equations. Douglas aircraft division report DAC 33735 (1967)

    Google Scholar 

  21. Klebanoff, P.S.: Characteristics of Turbulence in Boundary Layer with zero Pressure gradient. NACA TN 3178 (1954)

    Google Scholar 

  22. Baldwin, B.S., Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows. AIAA Paper 78-257 (1978)

    Google Scholar 

  23. Kolmogorov, A.M.: Equations of Turbulent Motion of an incompressible fluid. Akad. Nauk SSR, Seria Fiz. VI, No. 1–2 (1942)

    Google Scholar 

  24. Prandtl, L.: Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachrichten der Akademie der Wissenschaften, Göttingen, Math. Phys, Kl, p.6 (1945)

    Google Scholar 

  25. Launder, B.E., Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)

    MATH  Google Scholar 

  26. Chou, P.Y.: On the Velocity Correlations and the Solution of the Equation of Turbulent Fluctuations. Quart. Appl. Math., Vol. 3, 38 (1945)

    MATH  Google Scholar 

  27. Jones, W.P., Launder, B.E.: The Prediction of Laminarization with a Two-equation Model of Turbulence. International Journal of Heat and Mass Transfer 15, 301–314 (1972)

    Article  Google Scholar 

  28. Menter, F.R.: Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows, AIAA Technical Paper 93-2906 (1993)

    Google Scholar 

  29. Rodi, W., Scheurer, G.: Scrutinizing the k-ε Model Under Adverse Pressure Gradient Conditions. J. Fluids Eng. 108, 174–179 (1986)

    Article  Google Scholar 

  30. Menter, F.R.: Influence of Freestream Values on k - ω Turbulence Model Predictions. AIAA Journal 30(6) (1992)

    Google Scholar 

  31. Dr. D. Wicox, DCW Industries, Inc., Private communications (March 2008)

    Google Scholar 

  32. Menter, F.R.: Zonal Two Equation k-ε Turbulence Models for Aerodynamic Flows. AIAA Paper 93-2906 (1993)

    Google Scholar 

  33. Menter, F.R.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, 269–289 (1994)

    Article  Google Scholar 

  34. Menter, F.R., Kuntz, M., Langtry, R.: Ten Years of Experience with the SST Turbulence Model. In: Hanjalic, K., Nagano, Y., Tummers, M. (eds.) Turbulence. Heat and Mass Transfer, vol. 4, pp. 625–632. Springer, Heidelberg (2003)

    Google Scholar 

  35. Dr. F. Menter, CFX, Germany, Private communications (April 2008)

    Google Scholar 

  36. Schobeiri, M.T., Gilarranz, J., Johansen, E.: Final Report on: Efficiency, Performance, and Interstage Flow Field Measurement of Siemens-Westinghouse HP-Turbine Blade Series 9600 and 5600 (September 1999)

    Google Scholar 

  37. Schobeiri, M.T., Gillaranz, J.L., Johansen, E.S.: Aerodynamic and Performance Studies of a Three Stage High Pressure Research Turbine with 3-D Blades, Design Point and Off-Design Experimental Investigations. In: Proceedings of ASME Turbo Expo, 2000-GT-484 (2000)

    Google Scholar 

  38. Schobeiri, M.T., Abdelfatta, S., Chibli, H.: Investigating the Cause of CFD-Deficiencies in Accurately Predicting the Efficiency and Performance of High Pressure Turbines: a Combined Experimental and Numerical Study, submitted for publication. The document along with the entire experimental and numerical dada are also available at Turbomachinery Performance and Flow Research Laboratory, Texas A&M University (2011)

    Google Scholar 

  39. Chibli, H., Abedlfatah, S., Schobeiri, M.T., Kang, C.: An Experimental and Numerical Study of the Effects of Flow Incidence Angles on the Performance of a Stator Blade Cascade of a High Pressure Steam Turbine. ASME, Gt-2009-59131, presented at ASME Turbo Expo, June 8-12, Orlando, Florida, USA (2009)

    Google Scholar 

  40. ANSYS INC, ANSYS-CFX Release Documentation, 12.0 ed (2009)

    Google Scholar 

  41. Denton, J.: The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines, Journal of Turbomachinery 114 (1992)

    Google Scholar 

  42. Schobeiri, M.T., Pappu, K.: Optimization of Trailing Edge Ejection Mixing Losses Downstream of Cooled Turbine Blades: A Theoretical and Experimental Study. ASME Journal of Fluids Engineering 121, 118–125 (1999)

    Article  Google Scholar 

  43. Schobeiri, M.T., Chakka, P.: Prediction of Turbine Blade Heat Transfer and Aerodynamics Using Unsteady Boundary Layer Transition Model. International Journal of Heat and Mass Transfer 45, 815–829 (2002)

    Article  MATH  Google Scholar 

  44. Schobeiri, M.T., Radke, R.E.: 1994, Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition along the Concave Surface of a Curved Plate. ASME Paper 94-GT-327, presented at the International Gas Turbine and Aero-Engine Congress and Exposition, Hague, Niederlands, June 13–16 (1994)

    Google Scholar 

  45. Schobeiri, M.T., Read, K., Lewalle, J.: Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation and Wavelet Analysis. Journal of Fluids Engineering 125, 251–266 (2003), a combined two-part paper, this paper received the ASME-2004 FED-Best Paper Award

    Article  Google Scholar 

  46. Wright, L., Schobeiri, M.T.: The Effect of Periodic Unsteady Flow on Boundary Layer and Heat Transfer on a Curved Surface. ASME Transactions, Journal of Heat Transfer 120, 22–33 (1999)

    Article  Google Scholar 

  47. Schobeiri, M.T., Öztürk, B., Ashpis, D.: On the Physics of the Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions. ASME 2003-GT-38917, presented at International Gas Turbine and Aero-Engine Congress and Exposition, Atlanta, Georgia (2003), also published in ASME Transactions, Journal of Fluid Engineering 127, 503–513 (2005)

    Article  Google Scholar 

  48. Schobeiri, M.T., Öztürk, B.: Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer development, Separation, and Re-attachment Along the Surface of a Low Pressure Turbine Blade (2004), ASME 2004-GT-53929, presented at International Gas Turbine and Aero-Engine Congress and Exposition, Vienna, Austria, also published in the ASME Transactions, Journal of Turbomachinery 126(4), 663–676 (2004)

    Article  Google Scholar 

  49. Schobeiri, M.T., Öztürk, B., Ashpis, D.: Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-attachment along the Suction Surface of a Low Pressure Turbine Blade. ASME Paper GT2005-68600 (2005)

    Google Scholar 

  50. Schobeiri, M.T., Öztürk, B., Ashpis, D.: Intermittent Behavior of the Separated Boundary Layer along the Suction Surface of a Low Pressure Turbine Blade under Periodic Unsteady Flow Conditions. ASME Paper GT2005-68603 (2005)

    Google Scholar 

  51. Öztürk, B., Schobeiri, M.T.: Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-attachment over the Separation Bubble along the Suction Surface of a Low Pressure Turbine Blade. ASME, GT2006-91293 (2006)

    Google Scholar 

  52. Menter, F.: Zonal Two Equation k- Turbulence Models for Aerodynamic Flows. AIAA Paper 93-2906 (1993)

    Google Scholar 

  53. Menter, F.: Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal 32, 1598–1605 (1994)

    Article  Google Scholar 

  54. Schobeiri, M.T.: Fluid Mechanics for Engineers. A Graduate Text Book. Springer, Heidelberg (2011), doi:10.1007/978-3-642-11594-3

    Google Scholar 

  55. Dr. F. Menter, CFX, Germany, Private communications relative to the CFXtransition model (April 2008)

    Google Scholar 

  56. Langtry, R.B., Menter, F.R.: Transition Modeling for General CFD Applications in Aeronuatics. AIAA paper 2005-522 (2005)

    Google Scholar 

  57. Traupel, W.: Thermische Turbomaschinen, 3rd edn. Springer, New York (1977)

    Google Scholar 

  58. Dzung, L.S.: “ Konsistente Mittewerte in der Theorie der Turbomaschinen für kompressible Medien. BBC-Mitteilung 58, 485–492 (1971)

    Google Scholar 

  59. Emunds, R., Jennions, I.K., Bohn, D., Gier, J.: The Computation of Adjacent Blade-Row effects in a 1.5-Stage Axial Flow Turbine. ASME Transactions, Journal of Turbo machinery 121, 1–10 (1999)

    Article  Google Scholar 

  60. Day, C.R.B., Oldfield, M.L.G., Lock, G.D.: The Influence of Film Cooling on the Efficiency of an Annular Nozzle Guide Vane Cascade. ASME Transactions, Journal of Turbomachinery 121, 145–151 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard T. Schobeiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schobeiri, M.T. (2012). Turbulent Flow and Modeling in Turbomachinery. In: Turbomachinery Flow Physics and Dynamic Performance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24675-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24675-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24674-6

  • Online ISBN: 978-3-642-24675-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics