Advertisement

Turbine Aerodynamic Design and Off-Design Performance

  • Meinhard T. Schobeiri
Chapter

Abstract

As briefly discussed in Chapter 13, within a turbine component, an exchange of mechanical energy (shaft work) with the surroundings takes place. In contrast to compressors, the total energy of the working medium is partially converted into shaft work, thus supplying necessary power to drive a variety of components. In base load power generation area the primary function of a turbine unit is to drive generators supplying the electricity. Considering a large steam turbine shown in Fig. 17.1, the power generation is accomplished by a series of multi-stage turbines that consists of a high pressure part (HP), an intermediate pressure part (IP), and a low pressure part (LP).

Keywords

Turbine Stage Turbine Component Stagger Angle Expansion Diagram Ocean Thermal Energy Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schobeiri, M.T., Gilarranz, J.L., Johansen, E.S.: Aerodynamic and Performance Studies of a Three-Stage High Pressure Research Turbine with 3-DBlades, Design Point and Off-Design Experimental Investigations. ASME paper: 2000-GT-484 (2000)Google Scholar
  2. 2.
    Traupel, W.: Thermische Turbomaschinen, 3rd edn. Springer, Heidelberg (1977)Google Scholar
  3. 3.
    Vavra, M.H.: Aero-Thermodynamics and Flow in Turbomachines. John Wiley & Sons, Chichester (1960)Google Scholar
  4. 4.
    NASA SP-290, Turbine Design and Application, vol. 2 (1975)Google Scholar
  5. 5.
    Kroon, R.P., Tobiasz, H.J.: Off-Design Performance of Multistage Turbines. Trans. ASME, Journal of Eng. Power 93, 21–27 (1971)CrossRefGoogle Scholar
  6. 6.
    Kochendorfer, F.D., Nettles, J.C.: An Analytical Method Estimating Turbine Performance. NACA Report 930 (1948)Google Scholar
  7. 7.
    Bammert, K., Zehner, P.: Measurement of the Four-Quadrant Characteristics on a Multistage Turbine. Trans. ASME, Journal of Eng. Power 102(2) (1980)Google Scholar
  8. 8.
    Zehner, P.: Vier-Quadranten Charakteristiken mehrstufiger axialer Turbinen. VDI-Forsch.-Bericht. VDI-2, Reihe 6, Nr. 75 (1980)Google Scholar
  9. 9.
    Schobeiri, T.: Thermo-Fluid Dynamic Design Study of Single and Double Inflow Radial and Single-Stage Axial Steam Turbines for Open-Cycle Ocean Thermal Energy Conversion, Net Power Producing Experiment Facility. ASME Transaction, Journal of Energy Resources 112, 41–50 (1990)CrossRefGoogle Scholar
  10. 10.
    Schobeiri, M.T., Abouelkheir, M.: A Row-by-Row Off-Design Performance Calculation Method for Turbines. AIAA, Journal of propulsion and Power 8(4), 823–826 (1992)CrossRefGoogle Scholar
  11. 11.
    Stodola, A.: Dampf- und Gasturbinen, 6th edn. Springer, Berlin (1924)Google Scholar
  12. 12.
    Horlock, J.H.: Axial Flow Turbines. Robert E. Krieber Publishing Company (1973)Google Scholar
  13. 13.
    Pfeil, H.: Zur Frage des Betriebesverhaltens von Turbinen. VDI-Zeitschrift, Forschung im Ingenieurwesen 41(2), 33–36 (1975)CrossRefGoogle Scholar
  14. 14.
    Schobeiri, M.T.: Eine einfache Näherungsmethode zur Berechnung des Betriebsverhaltens von Turbinen. VDI-Zeitschrift, Forschung im Ingenieurwesen 53(1), 33–36 (1987)CrossRefGoogle Scholar
  15. 15.
    Han, J.-C., Duta, S., Ekkad, S.: Gas Turbine Heat Transfer Technology. Tylor and Francis (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations