Massively Parallel Identification of Intersection Points for GPGPU Ray Tracing

  • Alexandre S. Nery
  • Nadia Nedjah
  • Felipe M. G. França
  • Lech Jozwiak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7017)

Abstract

The latest advancements in computer graphics architectures, as the replacement of some fixed stages of the pipeline for programmable stages (shaders), have been enabling the development of parallel general purpose applications on massively parallel graphics architectures (Streaming Processors). For years the graphics processing unit (GPU) is being optimized for increasingly high throughput of massively parallel floating-point computations. However, only the applications that exhibit Data Level parallelism can achieve substantial acceleration in such architectures. In this paper we present a parallel implementation of the GridRT architecture for GPGPU ray tracing. Such architecture can expose two levels of parallelism in ray tracing: parallel ray processing and parallel intersection tests, respectively. We also present a traditional parallel implementation of ray tracing in GPGPU, for comparison against the GridRT-GPGPU implementation.

Keywords

Graphic Processing Unit Field Programmable Gate Array Kernel Execution CUDA Kernel Data Level Parallelism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 3rd edn. A.K. Peters, Ltd., Natick (2008)CrossRefGoogle Scholar
  2. 2.
    Carr, N.A., Hall, J.D., Hart, J.C.: The ray engine. In: HWWS 2002: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 37–46. Eurographics Association, Aire-la-Ville (2002)Google Scholar
  3. 3.
    Fung, W.W.L., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and scheduling for efficient gpu control flow. In: Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pp. 407–420. IEEE Computer Society, Washington, DC, USA (2007)Google Scholar
  4. 4.
    Govindaraju, V., Djeu, P., Sankaralingam, K., Vernon, M., Mark, W.R.: Toward a multicore architecture for real-time ray-tracing. In: Proceedings of the 41st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 41, pp. 176–187. IEEE Computer Society, Washington, DC, USA (2008)Google Scholar
  5. 5.
    Havran, V., Prikryl, J., Purgathofer, W.: Statistical comparison of ray-shooting efficiency schemes. Technical report, Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria (2000)Google Scholar
  6. 6.
    Kirk, D.B., Hwu, W.-m.W.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco (2010)Google Scholar
  7. 7.
    Nery, A.S., Nedjah, N., França, F.M.G.: Two alternative parallel implementations for ray tracing: Openmp and mpi. In: Mecnica Computacional, vol. XXiX, pp. 6295–6302. Asociacin Argentina de Mecnica Computacional (2010)Google Scholar
  8. 8.
    Nery, A.S., Nedjah, N., França, F.M.G., Jozwiak, L.: A parallel architecture for ray-tracing with an embedded intersection algorithm. In: International Symposium on Circuits and Systems, pp. 1491–1494. IEEE Computer Society, Los Alamitos (2011)Google Scholar
  9. 9.
    Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26(1), 80–113 (2007)CrossRefGoogle Scholar
  10. 10.
    Suffern, K.: Ray Tracing from the Ground Up, 1st edn. A.K. Peters, Ltd., Natick (2007)Google Scholar
  11. 11.
    Wald, I., Ize, T., Kensler, A., Knoll, A., Parker, S.G.: Ray tracing animated scenes using coherent grid traversal. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 485–493. ACM, New York (2006)Google Scholar
  12. 12.
    Whitted, T.: An improved illumination model for shaded display. Commun. ACM 23(6), 343–349 (1980)CrossRefGoogle Scholar
  13. 13.
    Woop, S., Schmittler, J., Slusallek, P.: Rpu: a programmable ray processing unit for realtime ray tracing. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 434–444. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre S. Nery
    • 1
    • 3
  • Nadia Nedjah
    • 2
  • Felipe M. G. França
    • 1
  • Lech Jozwiak
    • 3
  1. 1.LAM - Computer Architecture and Microeletronics Laboratory, Systems Engineering and Computer Science Program, COPPEUniversidade Federal do Rio de JaneiroBrazil
  2. 2.Department of Electronics Engineering and Telecommunications, Faculty of EngineeringUniversidade do Estado do Rio de JaneiroBrazil
  3. 3.Department of Electrical Engineering - Electronic SystemsEindhoven University of TechnologyThe Netherlands

Personalised recommendations