Skip to main content

Fuzzy Control for Knowledge-Based Interpolation

  • Chapter
  • First Online:
Combining Experimentation and Theory

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 271))

Abstract

Fuzzy control accounts for the biggest industrial success of fuzzy logic. We review an interpretation of Mamdani’s heuristic control approach. It can be seen as knowledge-based interpolation based on input-output points of a vaguely known function.We reexamine two real-world control problems that have been fortunately solved based on this interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boixader, D., Jacas, J.: Extensionality based approximate reasoning. International Journal of Approximate Reasoning 19(3-4), 221–230 (1998); doi:10.1016/S0888-613X(98)00018-8

    Article  MATH  MathSciNet  Google Scholar 

  2. Cordón, O., del Jesus, M.J., Herrera, F.: A proposal on reasoning methods in fuzzy rule-based classification systems. International Journal of Approximate Reasoning 20(1), 21–45 (1999); doi:10.1016/S0888-613X(00)88942-2

    Google Scholar 

  3. Gabbay, D.M., Kruse, R. (eds.): Abductive Reasoning and Uncertainty Management Systems, Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 4. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  4. Klawonn, F., Castro, J.L.: Similarity in fuzzy reasoning. Mathware & Soft Computing 2(3), 197–228 (1995)

    MATH  MathSciNet  Google Scholar 

  5. Klawonn, F., Gebhardt, J., Kruse, R.: Fuzzy control on the basis of equality relations with an example from idle speed control. IEEE Transactions on Fuzzy Systems 3(3), 336–350 (1995), doi:10.1109/91.413237

    Article  Google Scholar 

  6. Klawonn, F., Kruse, R.: Equality relations as a basis for fuzzy control. Fuzzy Sets and Systems 54(2), 147–156 (1993), doi:10.1016/0165-0114(93)90272-J

    Article  MATH  MathSciNet  Google Scholar 

  7. Klawonn, F., Kruse, R.: The Inherent Indistinguishability in Fuzzy Systems. In: Lenski, W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 6–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Klawonn, F., Novák, V.: The relation between inference and interpolation in the framework of fuzzy systems. Fuzzy Sets and Systems 81(3), 331–354 (1996), doi:10.1016/0165-0114(96)83710-9

    Article  MATH  MathSciNet  Google Scholar 

  9. Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems. John Wiley & Sons Ltd., Chichester (1994)

    Google Scholar 

  10. Kruse, R., Gebhardt, J., Palm, R. (eds.): Fuzzy Systems in Computer Science. Vieweg-Verlag, Braunschweig/Wiesbaden, Germany (1994)

    Google Scholar 

  11. Kruse, R., Siegel, P. (eds.): ECSQAU 1991 and ECSQARU 1991. LNCS, vol. 548. Springer, Heidelberg (1991)

    Google Scholar 

  12. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975), doi:10.1016/S0020-7373(75)80002-2

    Article  MATH  Google Scholar 

  13. Schröder, M., Petersen, R., Klawonn, F., Kruse, R.: Two Paradigms of Automotive Fuzzy Logic Applications. In: Jamshidi, M., Titli, A., Zadeh, L., Boverie, S. (eds.) Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems. Environmental and Intelligent Manufacturing Systems Series, vol. 9, pp. 153–174. Prentice-Hall Inc, Upper Saddle River (1997)

    Google Scholar 

  14. Sudkamp, T.: Similarity, interpolation, and fuzzy rule construction. Fuzzy Sets and Systems 58(1), 73–86 (1993), doi:10.1016/0165-0114(93)90323-A

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Moewes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moewes, C., Kruse, R. (2012). Fuzzy Control for Knowledge-Based Interpolation. In: Trillas, E., Bonissone, P., Magdalena, L., Kacprzyk, J. (eds) Combining Experimentation and Theory. Studies in Fuzziness and Soft Computing, vol 271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24666-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24666-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24665-4

  • Online ISBN: 978-3-642-24666-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics