Advertisement

Fuzzy vs. Likert Scale in Statistics

  • María Ángeles Gil
  • Gil González-Rodríguez
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 271)

Abstract

Likert scales or associated codings are often used in connection with opinions/valuations/ratings, and especially with questionnaires with a pre-specified response format.A guideline to design questionnaires allowing free fuzzy-numbered response format is now given, the fuzzy numbers scale being very rich and expressive and enabling to describe in a friendly way the usual answers in this context. A review of some techniques for the statistical analysis of the obtained responses is enclosed and a real-life example is used to illustrate the application.

Keywords

Fuzzy Number Central Limit Theorem Response Format Simple Random Sample Fuzzy Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertoluzza, C., Corral, N., Salas, A.: On a new class of distances between fuzzy numbers. Math. & Soft Comput. 2, 71–84 (1995)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Bharadwaj, B.: Development of a fuzzy Likert scale for the WHO ICF to include categorical definitions on the basis of a continuum. ETD Collection for Wayne State University. Paper AAI1442894 (2007), http://digitalcommons.wayne.edu/dissertations/AAI1442894
  3. 3.
    Eshragh, F., Mamdani, E.H.: A general approach to linguistic approximation. Int. J. Man-Machine Studies 11, 501–519 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Gil, M.A., Lubiano, M.A., Montenegro, M., López-García, M.T.: Least squares fitting of an affine function and strength of association for interval data. Metrika 56, 97–111 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Giné, E., Zinn, J.: Bootstrapping general empirical measures. Ann. Probab. 18, 851–869 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    González-Rodríguez, G., Colubi, A., Gil, M.A.: Fuzzy data treated as functional data. A one-way ANOVA test approach. Comp. Statist Data Anal. (2011) (in press) doi:10.1016/j.csda.2010.06.013Google Scholar
  7. 7.
    González-Rodríguez, G., Montenegro, M., Colubi, A., Gil, M.A.: Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data. Fuzzy Sets and Systems 157, 2608–2613 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    van Laerhoven, H., van der Zaag-Loonen, H.J., Derkx, B.H.F.: A comparison of Likert scale and visual analogue scales as response options in childrens questionnaires. Acta Pædiatr 93, 830–835 (2004)CrossRefGoogle Scholar
  9. 9.
    Lalla, M., Facchinetti, G., Mastroleo, G.: Ordinal scales and fuzzy set systems to measure agreement: an application to the evaluation of teaching activity. Quality & Quantity 38, 577–601 (2004)CrossRefGoogle Scholar
  10. 10.
    Lazim, M.A., Osman, M.T.A.: Measuring teachers’ beliefs about Mathematics: a fuzzy set approach. Int. J. Soc. Sci. 4(1), 39–43 (2009)Google Scholar
  11. 11.
    Lubiano, M.A., Gil, M.A.: Estimating the expected value of fuzzy random variables in random samplings from finite populations. Statistical Papers 40(3), 277–295 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lubiano, M.A., Gil, M.A., López-Díaz, M., López, M.T.: The lambda-mean squared dispersion associated with a fuzzy random variable. Fuzzy Sets and Systems 111(3), 307–317 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Körner, R.: An asymptotic α-test for the expectation of random fuzzy variables. J. Stat. Plann Infer. 83, 331–346 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Körner, R., Näther, W.: On the variance of random fuzzy variables. In: Bertoluzza, C., Gil, M.A., Ralescu, D.A. (eds.) Statistical Modeling, Analysis and Management of Fuzzy Data, pp. 22–39. Physica-Verlag, Heidelberg (2002)Google Scholar
  15. 15.
    Montenegro, M., Casals, M.R., Lubiano, M.A., Gil, M.A.: Two-sample hypothesis tests of means of a fuzzy random variable. Information Sciences 133(1-2), 89–100 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Montenegro, M., Colubi, A., Casals, M.R., Gil, M.A.: Asymptotic and Bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59, 31–49 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Nguyen, H.T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Puri, M.L., Ralescu, D.A.: The concept of normality for fuzzy random variables. Ann. Probab. 11, 1373–1379 (1985)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Ramos-Guajardo, A.B., Colubi, A., González-Rodríguez, G., Gil, M.A.: One sample tests for a generalized Fréchet variance of a fuzzy random variable. Metrika 71(2), 185–202 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Trutschnig, W., González-Rodríguez, G., Colubi, A., Gil, M.: A new family of metrics for compact. Sets Based on a Generalized Concept of Mid and Spread Inform. Sci. 179, 3964–3972 (2009)zbMATHGoogle Scholar
  22. 22.
    Wu, C.-H.: An empirical study on the transformations of Likert-scale data to numerical scores. Appl. Math. Sci. 58(1), 2851–2862 (2007)Google Scholar
  23. 23.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Part 1. Inform. Sci. 8, 199–249 (1975); ; Part 2. Inform. Sci. 8, 301–353; Part 3. Inform. Sci. 9, 43–80MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • María Ángeles Gil
    • 1
  • Gil González-Rodríguez
    • 1
    • 2
  1. 1.University of OviedoOviedoSpain
  2. 2.European Centre for Soft ComputingMieresSpain

Personalised recommendations