Bipolar Queries: Some Inspirations from Intention and Preference Modeling

  • Janusz Kacprzyk
  • Sławomir Zadrożny
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 271)


The concept of a bipolar query, meant as a database query that involves both mandatory and optional conditions is discussed from the point of view of flexible database querying and modeling of more sophisticated user’s intentions and preferences. Aggregation of the matching degrees against the negative and positive conditions to derive an overall matching degree is considered taking as the point of departure the Lacroix and Lavency approach [25] for bipolar queries. It is shown that the use of a multiple valued logic based formalism for the representation of positive and negative desires in the context of intention modeling proposed by Casali, Godo and Sierra [8, 7] can be employed to extend the approach to bipolar queries. Both the approaches have roots in the seminal Dubois and Prade’s view of bipolarity in the possibilistic setting (cf. for a comprehensive review Dubois and Prade [17]).


Fuzzy Logic Multiagent System Linguistic Term Aggregation Operator Logical Connective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibility theory in preference modeling: Representation, fusion and optimal solutions. Information Fusion 7, 135–150 (2006)CrossRefGoogle Scholar
  2. 2.
    Benferhat, S., Kaci, S.: Towards a possibilistic logic handling of preferences. Applied Intelligence 14, 303–317 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bordogna, G., Pasi, G.: Linguistic aggregation operators of selection criteria in fuzzy information retrieval. International Journal of Intelligent Systems 10(2), 233–248 (1995)CrossRefGoogle Scholar
  4. 4.
    Bosc, P., Pivert, O.: Discriminated answers and databases: fuzzy sets as a unifying expression means. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), San Diego, USA, pp. 745–752 (1992)Google Scholar
  5. 5.
    Bosc, P., Pivert, O.: An approach for a hierarchical aggregation of fuzzy predicates. In: Proceedings of the Second IEEE International Conference on Fuzzy Systems (FUZZ-IEEE1993), San Francisco, USA, p. 1231 (1993)Google Scholar
  6. 6.
    Bosc, P., Pivert, O.: SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems 3(1), 1–17 (1995)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Casali, A., Godo, L., Sierra, C.: g-BDI: A Graded Intensional Agent Model for Practical Reasoning. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds.) MDAI 2009. LNCS, vol. 5861, pp. 5–20. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Casali, A., Godo, L., Sierra, C.: A Logical Framework to Represent and Reason about Graded Preferences and Intentions. In: Brewka, G., Lang, J. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia, pp. 27–37. AAAI Press (2008)Google Scholar
  9. 9.
    Chomicki, J.: Querying with Intrinsic Preferences. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 34–51. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Cohen, P.R., Levesque, H.: Intention is choice with commitment. Artificial Intelligence 42, 213–261 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    De Tré, G., Zadrożny, S., Bronselaer, A.: Handling bipolarity in elementary queries to possibilistic databases. IEEE Transactions on Fuzzy Sets 18(3), 599–612 (2010)CrossRefGoogle Scholar
  12. 12.
    De Tré, G., Zadrożny, S., Matthé, T., Kacprzyk, J., Bronselaer, A.: Dealing with Positive and Negative Query Criteria in Fuzzy Database Querying. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 593–604. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Dubois, D., Prade, H.: Default reasoning and possibility theory. Artificial Intelligence 35(2), 243–257 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In: Andreasen, T., Christiansen, H., Larsen, H. (eds.) Flexible Query Answering Systems, pp. 45–60. Kluwer Academic Publishers (1997)Google Scholar
  15. 15.
    Dubois, D., Prade, H.: FQAS 2002. LNCS, vol. 2522, pp. 174–182. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing, in: Galindo [20], pp. 97–114Google Scholar
  17. 17.
    Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. Fuzzy Sets and Systems 160(10), 1355–1366 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Dujmović, J.: Partial absorption function. Journal of the University of Belgrade, EE Dept. 659, 156–163 (1979)Google Scholar
  19. 19.
    Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support, Series D: System Theory. Knowledge Engineering and Problem Solving (1994)Google Scholar
  20. 20.
    Galindo, J. (ed.): Handbook of Research on Fuzzy Information Processing in Databases, Information Science Reference, New York, USA (2008)Google Scholar
  21. 21.
    Grabisch, M., Greco, S., Pirlot, M.: Bipolar and bivariate models in multicriteria decision analysis: Descriptive and constructive approaches. Int. J. Intell. Syst. 23, 930–969 (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht(1998)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kacprzyk, J., Zadrożny, S.: Computing with words in intelligent database querying: standalone and internet-based applications. Information Sciences 134(1-4), 71–109 (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kacprzyk, J., Zadrożny, S.: FQUERY for Access: fuzzy querying for a windows-based DBMS. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems, pp. 415–433. Physica-Verlag, Heidelberg (1995)Google Scholar
  25. 25.
    Lacroix, M., Lavency, P.: Preferences: Putting more knowledge into queries. In: Proceedings of the 13th International Conference on Very Large Databases, Brighton, UK, pp. 217–225 (1987)Google Scholar
  26. 26.
    Mesiar, R., Thiele, H.: On T-Quantifiers and S-Quantifiers. In: Novak, V., Perfilieva, I. (eds.) Discovering the World with Fuzzy Logic, pp. 310–326. Physica-Verlag, Heidelberg (2000)Google Scholar
  27. 27.
    Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR 1991), pp. 473–484. Morgan Kaufmann (1991)Google Scholar
  28. 28.
    Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Proceedings of the First International Conference on Multi-Agent Systems (ICMAS 1995), pp. 312–319 (1995)Google Scholar
  29. 29.
    Tudorie, C.: Qualifying objects in classical relational database querying. In: Galindo [20], pp. 218–245Google Scholar
  30. 30.
    Yager, R.: Higher structures in multi-criteria decision making. International Journal of Man-Machine Studies 36, 553–570 (1992)CrossRefGoogle Scholar
  31. 31.
    Yager, R.: Fuzzy logic in the formulation of decision functions from linguistic specifications. Kybernetes 25(4), 119–130 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Zadrożny, S.: Bipolar Queries Revisited. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 387–398. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Zadrożny, S., Kacprzyk, J.: Bipolar queries and queries with preferences. In: Proceedings of the 17th International Conference on Database and Expert Systems Applications, DEXA 1999, pp. 415–419. IEEE Comp. Soc., Poland (2006)CrossRefGoogle Scholar
  34. 34.
    Zadrożny, S., Kacprzyk, J. (eds.): Bipolar queries using various interpretations of logical connectives. LNCS, pp. 181–190 (2007)Google Scholar
  35. 35.
    Yorke, M.: Bipolarity or not? Some conceptual problems related to bipolar rating [1]. British Educational Research Journal 27(2), 171–186Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.PIAP – Industrial Institute of Automation and MeasurementsWarsawPoland
  3. 3.Warsaw School of Information TechnologyWarsawPoland

Personalised recommendations