Skip to main content

Optimized Two Party Privacy Preserving Association Rule Mining Using Fully Homomorphic Encryption

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7016)

Abstract

In two party privacy preserving association rule mining, the issue to securely compare two integers is considered as the bottle neck to achieve maximum privacy. Recently proposed fully homomorphic encryption (FHE) scheme by Dijk et.al. can be applied in secure computation. Kaosar, Paulet and Yi have applied it in preserving privacy in two-party association rule mining, but its performance is not very practical due to its huge cyphertext, public key size and complex carry circuit. In this paper we propose some optimizations in applying Dijk et.al.’s encryption system to securely compare two numbers. We also applied this optimized solution in preserving privacy in association rule mining (ARM) in two-party settings. We have further enhanced the two party secure association rule mining technique proposed by Kaosar et.al. The performance analysis shows that this proposed solution achieves a significant improvement.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499. VLDB, Santiago (1994)

    Google Scholar 

  2. Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino, E., Verykios, V.: Disclosure limitation of sensitive rules. In: KDEX 1999: Proceedings of the 1999 Workshop on Knowledge and Data Engineering Exchange, p. 45. IEEE Computer Society, Washington, DC, USA (1999)

    Google Scholar 

  3. Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation. In: ICDM 2005: Proceedings of the Fifth IEEE International Conference on Data Mining, pp. 589–592. IEEE Computer Society, Washington, DC, USA (2005)

    Google Scholar 

  4. Chen, K., Liu, L.: A random geometric perturbation approach to privacy-preserving data classification. Technical Report, College of Computing, Georgia Tech. (2005)

    Google Scholar 

  5. Clarkson, J.B.: Dense probabilistic encryption. In: Proceedings of the Workshop on Selected Areas of Cryptography, pp. 120–128 (1994)

    Google Scholar 

  6. Dasseni, E., Verykios, V.s., Elmagarmid, A.K., Bertino, E.: Hiding association rules by using confidence and support. In: IHW 2001: Proceedings of the 4th International Workshop on Information Hiding, London, UK, pp. 369–383. Springer, Heidelberg (2001)

    Google Scholar 

  7. Dijk, M.V., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  8. Duan, Y., Canny, J., Zhan, J.: Efficient privacy-preserving association rule mining: P4p style. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007, March 1-April 5, pp. 654–660 (2007)

    Google Scholar 

  9. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 217–228 (2002)

    Google Scholar 

  10. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1984)

    CrossRef  Google Scholar 

  11. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  13. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. Cryptology ePrint Archive, Report 2010/520 (2010)

    Google Scholar 

  14. Gkoulalas-Divanis, A., Verykios, S.V.: Association Rule Hiding for Data Mining. Springer, Heidelberg (2010) ISBN:9781441965691

    CrossRef  MATH  Google Scholar 

  15. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Elsevier Inc., Amsterdam (2006)

    MATH  Google Scholar 

  16. Hussein, M., El-Sisi, A., Ismail, N.: Fast cryptographic privacy preserving association rules mining on distributed homogenous data base. In: Lovrek, I., Howlett, R.J., Jain, L. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 607–616. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  17. Kantarcioglut, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Trans. on Knowl. and Data Eng. 16(9), 1026–1037 (2004)

    CrossRef  Google Scholar 

  18. Kaosar, M.G., Paulet, R., Yi, X.: Secure two-party association rule mining. In: Australasian Information Security Conference (AISC 2011), pp. 17–20 (January 2011)

    Google Scholar 

  19. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Trans. on Knowl. and Data Eng. 18(1), 92–106 (2006)

    CrossRef  Google Scholar 

  20. Oliveira, S., Oliveira, S.R.M., Zaane, O.R.: Toward standardization in privacy-preserving data mining. In: Proc. of the 3nd Workshop on Data Mining Standards (DM-SSP 2004), in conjuction with KDD 2004, pp. 7–17 (2004)

    Google Scholar 

  21. Oliveira, S.R.M., Zaane, O.R.: Achieving privacy preservation when sharing data for clustering. In: Proc. of the Workshop on Secure Data Management in a Connected World (SDM 2004) in conjunction with VLDB 2004, Toronto, Canada, pp. 67–82 (2004)

    Google Scholar 

  22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  23. Ramaiah, B.J., Rama, A.R.M., Kumari, M.K.: Parallel privacy preserving association rule mining on pc clusters, pp. 1538–1542 (March 2009)

    Google Scholar 

  24. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. Rizvi, S., Haritsa, J.R.: Maintaining data privacy in association rule mining. In: Proceedings of the 28th VLDB Conference, Hong Kong, pp. 682–693 (2002)

    Google Scholar 

  26. Saha, A., Manna, N.: Digital Principles and Logic Design. Laxmi Publications (2008)

    Google Scholar 

  27. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  28. Su, C., Sakurai, K.: A distributed privacy-preserving association rules mining scheme using frequent-pattern tree. In: Tang, C., Ling, C., Zhou, X., Cercone, N.J., Li, X. (eds.) ADMA 2008. LNCS (LNAI), vol. 5139, pp. 170–181. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  29. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education, Inc., London (2006)

    Google Scholar 

  30. Wu, C.M., Huang, Y.F., Chen, J.Y.: Privacy preserving association rules by using greedy approach. In: World Congress on Computer Science and Information Engineering, vol. 4, pp. 61–65 (2009)

    Google Scholar 

  31. Yi, X., Zhang, Y.: Privacy-preserving distributed association rule mining via semi-trusted mixer. Data & Knowledge Engineering 63, 550–567 (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaosar, M.G., Paulet, R., Yi, X. (2011). Optimized Two Party Privacy Preserving Association Rule Mining Using Fully Homomorphic Encryption. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2011. Lecture Notes in Computer Science, vol 7016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24650-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24650-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24649-4

  • Online ISBN: 978-3-642-24650-0

  • eBook Packages: Computer ScienceComputer Science (R0)