Abstract
In two party privacy preserving association rule mining, the issue to securely compare two integers is considered as the bottle neck to achieve maximum privacy. Recently proposed fully homomorphic encryption (FHE) scheme by Dijk et.al. can be applied in secure computation. Kaosar, Paulet and Yi have applied it in preserving privacy in two-party association rule mining, but its performance is not very practical due to its huge cyphertext, public key size and complex carry circuit. In this paper we propose some optimizations in applying Dijk et.al.’s encryption system to securely compare two numbers. We also applied this optimized solution in preserving privacy in association rule mining (ARM) in two-party settings. We have further enhanced the two party secure association rule mining technique proposed by Kaosar et.al. The performance analysis shows that this proposed solution achieves a significant improvement.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499. VLDB, Santiago (1994)
Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino, E., Verykios, V.: Disclosure limitation of sensitive rules. In: KDEX 1999: Proceedings of the 1999 Workshop on Knowledge and Data Engineering Exchange, p. 45. IEEE Computer Society, Washington, DC, USA (1999)
Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation. In: ICDM 2005: Proceedings of the Fifth IEEE International Conference on Data Mining, pp. 589–592. IEEE Computer Society, Washington, DC, USA (2005)
Chen, K., Liu, L.: A random geometric perturbation approach to privacy-preserving data classification. Technical Report, College of Computing, Georgia Tech. (2005)
Clarkson, J.B.: Dense probabilistic encryption. In: Proceedings of the Workshop on Selected Areas of Cryptography, pp. 120–128 (1994)
Dasseni, E., Verykios, V.s., Elmagarmid, A.K., Bertino, E.: Hiding association rules by using confidence and support. In: IHW 2001: Proceedings of the 4th International Workshop on Information Hiding, London, UK, pp. 369–383. Springer, Heidelberg (2001)
Dijk, M.V., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)
Duan, Y., Canny, J., Zhan, J.: Efficient privacy-preserving association rule mining: P4p style. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007, March 1-April 5, pp. 654–660 (2007)
Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of association rules. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 217–228 (2002)
El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1984)
Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009)
Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. Cryptology ePrint Archive, Report 2010/520 (2010)
Gkoulalas-Divanis, A., Verykios, S.V.: Association Rule Hiding for Data Mining. Springer, Heidelberg (2010) ISBN:9781441965691
Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Elsevier Inc., Amsterdam (2006)
Hussein, M., El-Sisi, A., Ismail, N.: Fast cryptographic privacy preserving association rules mining on distributed homogenous data base. In: Lovrek, I., Howlett, R.J., Jain, L. (eds.) KES 2008, Part II. LNCS (LNAI), vol. 5178, pp. 607–616. Springer, Heidelberg (2008)
Kantarcioglut, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Trans. on Knowl. and Data Eng. 16(9), 1026–1037 (2004)
Kaosar, M.G., Paulet, R., Yi, X.: Secure two-party association rule mining. In: Australasian Information Security Conference (AISC 2011), pp. 17–20 (January 2011)
Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Trans. on Knowl. and Data Eng. 18(1), 92–106 (2006)
Oliveira, S., Oliveira, S.R.M., Zaane, O.R.: Toward standardization in privacy-preserving data mining. In: Proc. of the 3nd Workshop on Data Mining Standards (DM-SSP 2004), in conjuction with KDD 2004, pp. 7–17 (2004)
Oliveira, S.R.M., Zaane, O.R.: Achieving privacy preservation when sharing data for clustering. In: Proc. of the Workshop on Secure Data Management in a Connected World (SDM 2004) in conjunction with VLDB 2004, Toronto, Canada, pp. 67–82 (2004)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Ramaiah, B.J., Rama, A.R.M., Kumari, M.K.: Parallel privacy preserving association rule mining on pc clusters, pp. 1538–1542 (March 2009)
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Rizvi, S., Haritsa, J.R.: Maintaining data privacy in association rule mining. In: Proceedings of the 28th VLDB Conference, Hong Kong, pp. 682–693 (2002)
Saha, A., Manna, N.: Digital Principles and Logic Design. Laxmi Publications (2008)
Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)
Su, C., Sakurai, K.: A distributed privacy-preserving association rules mining scheme using frequent-pattern tree. In: Tang, C., Ling, C., Zhou, X., Cercone, N.J., Li, X. (eds.) ADMA 2008. LNCS (LNAI), vol. 5139, pp. 170–181. Springer, Heidelberg (2008)
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education, Inc., London (2006)
Wu, C.M., Huang, Y.F., Chen, J.Y.: Privacy preserving association rules by using greedy approach. In: World Congress on Computer Science and Information Engineering, vol. 4, pp. 61–65 (2009)
Yi, X., Zhang, Y.: Privacy-preserving distributed association rule mining via semi-trusted mixer. Data & Knowledge Engineering 63, 550–567 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaosar, M.G., Paulet, R., Yi, X. (2011). Optimized Two Party Privacy Preserving Association Rule Mining Using Fully Homomorphic Encryption. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2011. Lecture Notes in Computer Science, vol 7016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24650-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-24650-0_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24649-4
Online ISBN: 978-3-642-24650-0
eBook Packages: Computer ScienceComputer Science (R0)