A Global Snapshot Collection Algorithm with Concurrent Initiators with Non-FIFO Channel

  • Diganta Goswami
  • Soumyadip Majumder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7016)


Taking a global snapshot in the absence of a global clock is a challenging issue in distributed system. The problem becomes more challenging when the communication channel is a non-FIFO one, due to the lack of FIFO properties in transmitting messages. Multiple initiators further complicate the situation. In this paper, we present a global snapshot collection algorithm with multiple initiators in the case of non-FIFO communication channel. We have shown that the algorithm can take a unique global consistent snapshot with non-FIFO channel, and terminates in O(mn 2) message complexity where m is the number of concurrent initiators, and n is the number of processes in the system.


Message Complexity Application Message Snapshot State FIFO Channel Multiple Initiator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)CrossRefGoogle Scholar
  2. 2.
    Hélary, J.-M.: Observing global states of asynchronous distributed applications. In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp. 124–135. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  3. 3.
    Chandrasekaran, S., Venkatesan, S.: A message-optimal algorithm for distributed termination detection. J. Parallel Distrib. Comput. 8(3), 245–252 (1990)CrossRefGoogle Scholar
  4. 4.
    Lai, T.-H., Yang, T.H.: On distributed snapshots. Inf. Process. Lett. 25(3), 153–158 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mattern, F.: Virtual time and global states of distributed system. In: Proceddings of the Workshop on Parallel and Distributed Algorithm, pp. 215–226 (1989)Google Scholar
  6. 6.
    Kshemkalyani, A.D.: A symmetric o(n log n) message distributed snapshot algorithm for large-scale systems. In: CLUSTER, pp. 1–4 (2009)Google Scholar
  7. 7.
    Garg, R., Garg, V.K., Sabharwal, Y.: Scalable algorithms for global snapshots in distributed systems. In: ICS, pp. 269–277 (2006)Google Scholar
  8. 8.
    Kshemkalyani, A.D.: Fast and message-efficient global snapshot algorithms for large-scale distributed systems. IEEE Trans. Parallel Distrib. Syst. 21(9), 1281–1289 (2010)CrossRefGoogle Scholar
  9. 9.
    Koo, R., Toueg, S.: Checkpointing and rollback-recovery for distributed systems. IEEE Trans. Software Eng. 13(1), 23–31 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Spezialetti, M., Kearns, P.: Efficient distributed snapshots. In: ICDCS, pp. 382–388 (1986)Google Scholar
  11. 11.
    Prakash, R., Singhal, M.: Maximal global snapshot with multiple initiators, pp. 334–351 (1994)Google Scholar
  12. 12.
    Kumar, K.P.K., Hansdah, R.C.: An efficient and scalable checkpointing and recovery algorithm for distributed systems. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 94–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Diganta Goswami
    • 1
  • Soumyadip Majumder
    • 1
  1. 1.Indian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations