Advertisement

Modelling Shape Memory Alloy Behaviour under Proportional Loading and Anisothermal Conditions

  • Christian Lexcellent
  • Mohammed Lamine Boubakar
  • Christian Bouvet
  • Sylvaine Calloch
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 61)

Abstract

Based on the experimental identification of the phase transformation surface, a modelling of anisothermal behaviour of shape memory alloys (SMA) is proposed. Within the framework of the thermodynamics of irreversible processes, two internal variables are chosen: the stress-induced martensite volume fraction and the self-accommodating martensite volume fraction. A special attention is paid to take into account the asymmetry between tension and compression behaviours.

Keywords

Shape Memory Alloy Representative Volume Element Martensite Volume Fraction Forward Transformation Proportional Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raniecki, B., Tanaka, K., Ziolkowski, A.: Testing and modeling of NiTi SMA at complex stress state. Mater. Sci. Res. Int. 2, 327–334 (2001)Google Scholar
  2. 2.
    Bouvet, C., Calloch, S., Lexcellent, C.: Mechanical behavior of a CuAlBe shape memory alloy under multiaxial proportional and non-proportional loadings. J. Eng. Mater.-T ASME 124, 112–124 (2002)CrossRefGoogle Scholar
  3. 3.
    Bouvet, C., Calloch, S., Taillard, K., Lexcellent, C.: Effect of multi-axial loading on pseudoelastic behavior of shape memory alloys. In: Proc. Int. Conf. Heterogeneous Materials Mechanics - ICCHMM, China (2003)Google Scholar
  4. 4.
    Lexcellent, C., Vivet, A., Bouvet, C., Calloch, S., Blanc, P.: Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycristalline shape memory alloys. J. Mech. Phys. Solids 50, 2717–2735 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Orgeas, L., Favier, D.: Stress-induced martensite transformation of a NiTi alloy in isothermal shear, tension and compression. Acta. Mater. 46, 5579–5591 (1998)CrossRefGoogle Scholar
  6. 6.
    Leclercq, S., Lexcellent, C.: A general macroscopic description of thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 44, 953–980 (1996)CrossRefGoogle Scholar
  7. 7.
    Raniecki, B., Lexcellent, C.: Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur. J. Mech. A-Solid 17, 185–205 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Brocca, M., Brinson, L.C., Bazant, Z.P.: Three-dimensional constitutive model for shape memory alloys based on microplane model. J. Mech. Phys. Solids 50, 1051–1077 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jushasz, L., Andrä, H., Heseebeck, O.: Macroscopic modelling of shape memory alloys under non-proportional thermomechanical loading. Part I: Thermomechanical fundamentals. J. Intel Mat. Syst. Str. 13(12), 825–836 (2002)Google Scholar
  10. 10.
    Koistinen, D.P.: A general equation describing the extend of the austenite-martensite transformation in pure iron-carbon and plain carbon steel. Acta. Metall. Mater. 7, 59–69 (1959)CrossRefGoogle Scholar
  11. 11.
    Helm, D., Haupt, P.: Shape memory behaviour: modelling within continuum thermomechanics. Int. J. Solid Struct. 40, 827–849 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Bouvet, C.: De l’uniaxial au multiaxial: comportement pseudoélastique des alliages à mémoire de forme. PhD Thesis n 870 - University of Franche-Comté, Besançon (2002) (in French)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Lexcellent
    • 1
  • Mohammed Lamine Boubakar
    • 1
  • Christian Bouvet
    • 1
  • Sylvaine Calloch
    • 2
  1. 1.Laboratoire de Mécanique Appliquée R. Chaléat, UMR-CNRS 6604Université de Franche-ComtéBesançonFrance
  2. 2.Laboratoire de Mécanique et Technologie, UMR-CNRS 8535Université Paris VICachan CedexFrance

Personalised recommendations