Mechanical Modelling of Stays under Thermal Loads

  • Giuseppe Vairo
  • Sami Montassar
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 61)


This paper aims at investigating the effects of thermal loads on the elastic response of cables in cable-stayed structures. Starting from a catenary-based approach, an analytical model for evaluating the cable’s stress variation induced by a thermal load linearly distributed along the stay chord is proposed, accounting for sag effect as well as for the stiffness of the stay-supported structure. Moreover, the Dischinger’s equivalent modulus formulation is generalized to include inelastic thermal contributions, deducing generalized Dischinger-type secant and tangent equivalent elastic moduli, and refining the quasi-secant theory recently proposed. The influence of temperature variations on the mechanical response of typical stays employed in long-span cable-stayed bridges is highlighted through several numerical applications, confirming soundness and effectiveness of the proposed formulation.


Thermal Load Live Load Cable Tension Stay Cable Suspended Cable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Troitsky, M.S.: Cable stayed bridges: An approach to Modern Bridge Design. Van Nostrand Reinhold Co., New York (1988)Google Scholar
  2. 2.
    Irvine, H.M.: Cable Structures. MIT Press, Cambridge (1992)Google Scholar
  3. 3.
    Gimsing, N.J.: Cable supported bridges: concept and design, 2nd edn. J. Wiley & Sons, New York (1997)Google Scholar
  4. 4.
    Leonard, J.W.: Tension structures. McGraw-Hill, New York (1988)Google Scholar
  5. 5.
    Buchholdt, H.A.: An introduction to cable roof structures. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  6. 6.
    Kadlcak, J.: Statics of suspension cable roofs. A.A. Balkema, Rotterdam (1995)Google Scholar
  7. 7.
    O’Brian, W.: General solution of suspended cable problem. J. Struct. Div. ASCE 93, 1–126 (1967)Google Scholar
  8. 8.
    McDonald, B., Peyrot, A.: Sag-tension calculation valid for any line geometry. J. Struct. Eng. ASCE 116(9), 2374–2387 (1990)CrossRefGoogle Scholar
  9. 9.
    Peyrot, A.H., Goulois, A.M.: Analysis of cable structures. Comput. Struct. 10, 805–813 (1979)CrossRefGoogle Scholar
  10. 10.
    Jajaraman, H.B., Knudson, W.C.: A curved element for the analysis of cable structures. Comput. Struct. 14, 325–333 (1981)CrossRefGoogle Scholar
  11. 11.
    Karoumi, R.: Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Comput. Struct. 71, 397–412 (1999)CrossRefGoogle Scholar
  12. 12.
    Kim, K.S., Lee, H.S.: Analysis of target configurations under dead loads for cable-supported bridges. Comput. Struct. 79, 2681–2692 (2001)CrossRefGoogle Scholar
  13. 13.
    Kahla, N.B.: Response of a guyed tower to a guy rupture under no wind pressure. Eng. Struct. 22, 699–706 (2000)CrossRefGoogle Scholar
  14. 14.
    Bruno, D., Leonardi, A.: Nonlinear structural models in cableway transport systems. Simulat Pract. Theory 7(3), 207–218 (1999)CrossRefGoogle Scholar
  15. 15.
    Zhu, N.H., Meguid, S.A.: Elastodynamic analysis of low tension cables using a new curved beam element. Int. J. Solids Struct. 43, 1490–1504 (2006)zbMATHCrossRefGoogle Scholar
  16. 16.
    Ni, Y.Q., Ko, J.M., Zheng, G.: Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity. J. Sound Vib. 257(2), 301–319 (2002)CrossRefGoogle Scholar
  17. 17.
    Ceballos, M.A., Prato, C.A.: Determination of the axial force on stay cables accounting for their bending and rotational end restraints by free vibration tests. J. Sound Vib. 317, 127–141 (2008)CrossRefGoogle Scholar
  18. 18.
    Srinil, N., Rega, G., Chucheepsakul, S.: Large amplitude three-dimensional free vibrations of inclined sagged elastic cables. Nonlinear Dynam. 33, 129–154 (2003)zbMATHCrossRefGoogle Scholar
  19. 19.
    Lacarbonara, W., Paolone, A., Vestroni, F.: Non-linear modal properties of non-shallow cables. Int. J. Nonlinear Mech. 42, 542–554 (2007)CrossRefGoogle Scholar
  20. 20.
    Srinil, N., Rega, G.: Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. J. Sound Vib. 310, 230–242 (2008)CrossRefGoogle Scholar
  21. 21.
    Montassar, S., Vairo, G.: Thermal effects on statical behaviour of elastic cables for cable-stayed structures. In: Proc. XXXVII Nat. Cong. Italian Association Stress Analysis AIAS, Rome (2008)Google Scholar
  22. 22.
    Ren, W.X., Chen, G., Hu, W.H.: Empirical formulas to estimate cable tension by cable fundamental frequency. Struct. Eng. Mech. 20, 363–380 (2005)Google Scholar
  23. 23.
    Kim, B.H., Park, T.: Estimation of cable tension force using the frequency-based system identification method. J. Sound Vib. 304, 660–676 (2007)CrossRefGoogle Scholar
  24. 24.
    Bouaanani, N.: Numerical investigation of the modal sensistivity of suspended cables with localized damage. J. Sound Vib. 292, 1015–1030 (2006)CrossRefGoogle Scholar
  25. 25.
    Lepidi, M., Gattulli, V., Vestroni, F.: Static and dynamic response of elastic suspended cables with damage. Int. J. Solids Struct. 44, 8194–8212 (2007)zbMATHCrossRefGoogle Scholar
  26. 26.
    Noisternig, J.F.: Carbon fibre composites as stay cables for bridges. Appl. Compos. Mater. 7, 139–150 (2000)CrossRefGoogle Scholar
  27. 27.
    Dischinger, F.: Hängebrücken für schwerste Verkehrslasten (I and II). Der Bauingenieur 24(3), 65–75, 107–113 (1949) (in German)Google Scholar
  28. 28.
    Ernst, J.H.: Der E-modul von seilen unter berücksichtigung des durchhanges. Der Bauingenieur 40(2), 52–55 (1965) (in German)Google Scholar
  29. 29.
    Bruno, D., Maceri, F., Olivito, R.S.: Analysis of the elastic response of stays and stayed systems. IABSE Proc. P-143 90, 29–44 (1990)Google Scholar
  30. 30.
    Freire, A.M.S., Negrao, J.H.O., Lopes, A.V.: Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges. Comput. Struct. 84, 2128–2140 (2006)CrossRefGoogle Scholar
  31. 31.
    Como, M., Grimaldi, A., Maceri, F.: Statical behaviour of long-span cable-stayed bridges. Int. J. Solids Struct. 21(8), 831–850 (1985)zbMATHCrossRefGoogle Scholar
  32. 32.
    Tibert, G.: Numerical analyses of cable roof structures. Trita-Bkn, Bulletin 49 (1999)Google Scholar
  33. 33.
    Desai, Y.M., Punde, S.: Simple model for dynamic analysis of cable supported structures. Eng. Struct. 23, 271–279 (2001)CrossRefGoogle Scholar
  34. 34.
    Au, F.T.K., Cheng, Y.S., Cheung, Y.K., Zheng, D.Y.: On the determination of natural frequencies and mode shapes of cable-stayed bridges. Appl. Math. Model 25, 1099–1115 (2001)zbMATHCrossRefGoogle Scholar
  35. 35.
    Cheng, J., Jiang, J.J., Xiao, R.C., Xiang, H.F.: Advanced aerostatic stability analysis of cable-stayed bridges using finite-element method. Comput. Struct. 80, 1145–1158 (2002)CrossRefGoogle Scholar
  36. 36.
    Maceri, F., Vairo, G.: Modelling and simulation of long-span bridges under aerodynamic loads. In: Frémond, M., Maceri, F. (eds.) Novel Approaches in Civil Engineering. LNACM, vol. 14, pp. 359–376. Springer, Heidelberg (2004)Google Scholar
  37. 37.
    Yau, J.D., Yang, Y.B.: Vibration reduction for cable-stayed bridges traveled by high-speed trains. Finite Elem. Anal. Des. 40, 341–359 (2004)CrossRefGoogle Scholar
  38. 38.
    Song, W.K., Kim, S.E.: Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts. Eng. Struct. 29, 2133–2142 (2007)CrossRefGoogle Scholar
  39. 39.
    Bruno, D., Greco, F., Lonetti, P.: Dynamic impact analysis of long span cable-stayed bridges under moving loads. Eng. Struct. 30, 1160–1177 (2008)CrossRefGoogle Scholar
  40. 40.
    Vairo, G.: A simple analytical approach to the aeroelastic stability problem of long-span cable-stayed bridges. Int. J. Comput. Method Eng. Sci. Mech. 11, 1–11 (2010)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Vairo, G.: A closed-form refined model of the cable’s nonlinear response in cable-stayed structures. Mech. Adv. Mater. Struct. 16, 456–466 (2009)CrossRefGoogle Scholar
  42. 42.
    Vairo, G.: A quasi-secant continuous model for the analysis of long-span cable-stayed bridges. Meccanica 43, 237–250 (2008)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giuseppe Vairo
    • 1
  • Sami Montassar
    • 2
  1. 1.Department of Civil EngineeringUniversity of Rome ” Tor Vergata”RomeItaly
  2. 2.Civil Engineering LaboratoryTunis National School of EngineeringTunisTunisia

Personalised recommendations