Discrete Models Including Non-smooth Non-linearities of Friction Type

  • Claude-Henri Lamarque
  • Frédéric Bernardin
  • Matthieu Holland
  • Jérôme Bastien
  • Michelle Schatzman
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 61)

Abstract

Models with a finite number of degrees of freedom including linear terms, nonlinear smooth terms, non smooth terms of friction type and terms with delay under external deterministic or stochastic excitation are considered. Dry friction is introduced via a finite number of Saint-Venant elements. Mathematical descriptions of constitutive laws and models are given. A survey of theoretical results (existence and uniqueness) are recalled. Implicit Euler numerical scheme is then build. Convergence results with order are summarized in both deterministic and stochastic case. A few applications to mechanical systems are provided.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schatzman, M., Bastien, J., Lamarque, C.-H.: An ill-posed mechanical problem with friction. Eur. J. Mech. A-Solid 18, 415–420 (1999)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bastien, J., Schatzman, M., Lamarque, C.-H.: Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A-Solid 19(2), 277–307 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bastien, J., Schatzman, M., Lamarque, C.-H.: Study of an elastoplastic model with an infinite number of internal degrees of freedom. Eur. J. Mech. A-Solid 21(2), 199–222 (2002)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bastien, J.: Etude théorique et numérique d’inclusions différentielles maximales monotones. Application à des modèles élastoplastiques. PhD Thesis, Université Lyon I et ENTPE, 96-2000 (2000) (in French)Google Scholar
  5. 5.
    Bernardin, F.: Equations différentielles stochastiques multivoques: aspects théoriques et numériques - Applications. PhD Thesis, Universitè Lyon I, 243 (2004) (in French)Google Scholar
  6. 6.
    Awrejcewicz, J., Lamarque, C.-H.: Bifurcation and chaos in nonsmooth mechanical systems. Series A, vol. 45. World Scientific, London (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Lamarque, C.-H., Bastien, J.: Numerical study of a forced pendulum with friction. Nonlinear Dynam. 23(4), 335–352 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bernardin, F.: Multivalued Stochastic Differential Equations: Convergence of a numerical scheme. Set-Valued Anal. 11, 393–415 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bastien, J., Schatzman, M.: Schéma numérique pour des inclusions différentielles avec terme maximal monotone. C. R. Acad. Sci. Paris Série I Math. 330, 611–615 (2000) (in French)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies n 5. Notas de Matemática 50, North-Holland Publishing Co., Amsterdam (1973) (in French)Google Scholar
  11. 11.
    Lamarque, C.-H., Bastien, J., Holland, M.: Study of a maximal monotone model with a delay term. SIAM J. Num. Anal. 41(4), 1286–1300 (2003)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cépa, E.: Equations différentielles stochastiques multivoques. Lecture Notes in Mathematics, Séminaire de Probabilités XXIX 86–107 (1995)Google Scholar
  13. 13.
    Pernot, S.: Méthodes ondelettes pour l’étude des vibrations et de la stabilité des systèmes dynamiques. PhD Thesis, INSA de Lyon et ENTPE, ISAL0071 (2000) (in French)Google Scholar
  14. 14.
    Roberti, V.: Contrôle de Structures: Théories et Applications. PhD Thesis, Ecole Centrale de Lyon 94-19 (1994) (in French)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claude-Henri Lamarque
    • 1
  • Frédéric Bernardin
    • 1
  • Matthieu Holland
    • 1
  • Jérôme Bastien
    • 2
  • Michelle Schatzman
    • 3
  1. 1.Laboratoire GéoMatériaux, URA CNRS 1652Ecole Nationale des Travaux Publics de l’EtatVaulx-en-Velin CedexFrance
  2. 2.Laboratoire de Mécatronique 3MUniversité de Technologie de Belfort-MontbéliardBelfort CedexFrance
  3. 3.Laboratoire de Mathématiques Appliquées de Lyon, UMR CNRS 5585Université Claude Bernard Lyon IVilleurbanne CedexFrance

Personalised recommendations