A Generalization of the Endochronic Theory of Plasticity Based on the Introduction of Several Intrinsic Times

  • Nelly Point
  • Silvano Erlicher
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 61)


In this note, a generalization of the endochronic theory of plasticity is proposed. The basic idea is the introduction of several distinct intrinsic times instead of the unique one characterizing the standard theory. It follows that endochronic models without elastic domain and multi-layer plasticity models, presenting multi-linear hysteresis loops, can be described by means of a common theoretical framework. Moreover, a new model can be defined, able to produce, for uniaxial loading, closed hysteresis loops for small amplitudes and open loops for larger amplitudes.


Hysteresis Loop Internal Variable Helmholtz Free Energy Free Energy Density Uniaxial Loading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valanis, K.C.: A theory of viscoplasticity without a yield surface. Part I: general theory. Arch. Mech. 23(4), 517–533 (1971)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Valanis, K.C.: On the foundations of the endochronic theory of plasticity. Arch. Mech. 27, 857 (1976)MathSciNetGoogle Scholar
  3. 3.
    Bouc, R.: Forced vibrations of a mechanical system with hysteresis. In: Proc. 4th Conf. Nonlinear Oscillations, Prague(1967)Google Scholar
  4. 4.
    Bouc, R.: Modèle mathématiques d’hystérésis. Acustica 24, 16–25 (1971) (in French)zbMATHGoogle Scholar
  5. 5.
    Volterra, V.: Sur la théorie mathématique des phénomènes héréditaires. J. Math. Pure. Appl. 7, 249 (1928) (in French)Google Scholar
  6. 6.
    Baber, T.T., Wen, Y.K.: Random vibrations of hysteretic, degrading systems. J. Eng. Mech. Div. ASCE 107(6), 1069–1087 (1981)Google Scholar
  7. 7.
    Casciati, F.: Stochastic dynamics of hysteretic media. Struct. Safety 6, 259–269 (1989)CrossRefGoogle Scholar
  8. 8.
    Karray, M.A., Bouc, R.: Etude dynamique d’un système d’isolation antisismique. Ann. ENIT 3(1), 43–60 (1989) (in French)Google Scholar
  9. 9.
    Wen, Y.K.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. ASCE 102, 249–263 (1976)Google Scholar
  10. 10.
    Erlicher, S., Point, N.: Thermodynamic admissibility of Bouc-Wen type models. C. R. Acad. Sci. Mechanique 332(1), 51–57 (2004)zbMATHGoogle Scholar
  11. 11.
    Sivaselvan, M.V., Reinhorm, A.M.: Hysteretic models for deteriorating inelastic structures. J. Eng. Mech. 126(6), 633–640 (2000)CrossRefGoogle Scholar
  12. 12.
    Bazant, Z.P.: Endochronic inelasticity and incremental plasticity. Int. J. Solid. Struct. 14, 691–714 (1978)zbMATHCrossRefGoogle Scholar
  13. 13.
    Valanis, K.C.: Fundamental consequences of a new intrinsic time measure: plasticity as the limit of the endochronic theory. Arch. Mech. 32, 517–533 (1980)MathSciNetGoogle Scholar
  14. 14.
    Watanabe, O., Atluri, S.N.: Internal time, general internal variable, and multi-yield-surface theories of plasticity and creep: A unification of concepts. Int. J. Plast. 2, 37–57 (1986)zbMATHCrossRefGoogle Scholar
  15. 15.
    Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger effect. GEGB Report RD/B/N 731 (1966)Google Scholar
  16. 16.
    Chaboche, J.L., Dang-Van, K., Cordier, G.: Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. L11/3, Trans SMIRT-5, Berlin (1979)Google Scholar
  17. 17.
    Chiang, D.Y., Beck, J.L.: A new class of distributed-element models for cyclic plasticity. Int. J. Solid Struct. 31(4), 469–484 (1994)zbMATHCrossRefGoogle Scholar
  18. 18.
    Iwan, W.D.: A distributed element model for hyteresis and its steady-state dynamic response. J. Appl. Mech. ASME 33(4), 893–900 (1966)CrossRefGoogle Scholar
  19. 19.
    Besseling, J.F.: A theory of elastic, plastic and creep deformation of an initially isotropic material showing anisotropic strain hardening, creep recovery and secondary creep. J. Appl. Mech. ASME 25, 529 (1958)zbMATHGoogle Scholar
  20. 20.
    Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Herrmann, Paris (1965) (in French)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nelly Point
    • 1
    • 2
  • Silvano Erlicher
    • 1
    • 3
  1. 1.Institut Navier (ENPC/LCPC,LAMI)Marne la Vallée Cedex 2France
  2. 2.Département de MathématiquesConservatoire National des Arts et MétiersParis Cedex 03France
  3. 3.Dipartimento di Ingegneria Meccanica e StrutturaleUniversitá di TrentoTrentoItaly

Personalised recommendations