Thiophene-Containing Lipoxin A4 Analogues: Synthesis and Their Effect on the Production of Key Cytokines

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

It has recently been demonstrated that replacement of the triene system, present in native LXA4 and LXB4 with benzene, increases the increases the stability of these eicosanoids to enzymatic metabolism [1, 2, 3] In  Chap. 4, we demonstrated that the addition of a heteroatom can also enhance the bioactivity. This pyridine-containing analogue displayed an impressive ability to resolve the inflammation process [4]. In an extension to this work, we sought to replace the triene system with a thiophene ring, Fig. 5.1, and examine the effect this substitution has on the biological potency of the compound. This substitution is a classical example of the bioisoterism concept in medicinal chemistry [5, 6]. Thiophene is an excellent bioisostere for benzene, as the diameter of the sulphur atom is the same length of the replaced C=C double bond [7]. It also offers the possibility of accessing three positional isomers of the analogue which can assist in probing the compounds bioactivity. This particular drug design approach is common and accounts for a large proportion of the successful examples of bioisosteric replacement which can be seen in the literature [8, 9, 10].
Fig. 5.1

Design of thiophene-containing LXA4 analogue 2

Keywords

Cross Coupling Silyl Ether Vinyl Carbon Pyridinium Chlorochromate Cross Metathesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    O’ Sullivan TP, Vallin KSA, Shah STA, Fakhry J, Maderna P, Scannell M, Sampaio ALF, Perretti M, Godson C, Guiry PJ (2007) J Med Chem 50:5894CrossRefGoogle Scholar
  2. 2.
    Petasis NA, Akritopoulou-Zanze I, Fokin VV, Bernasconi G, Keledjian R, Yang R, Uddin J, Nagulapalli KC, Serhan CN (2005) Prostaglandins. Leukot Essent Fat Acids 73:301CrossRefGoogle Scholar
  3. 3.
    Sun Y-P, Tjonahen E, Keledjian R, Zhu M, Yang R, Recchiuti A, Pillai PS, Petasis NA, Serhan CN (2009) Prostaglandins Leukot Essent Fat Acids 81:357CrossRefGoogle Scholar
  4. 4.
    Duffy CD, Maderna P, McCarthy C, Loscher CE, Godson C, Guiry PJ (2010) Chem Med Chem 5:517Google Scholar
  5. 5.
    Chen X, Wang W (2003) Annu Rep Med Chem 38:333CrossRefGoogle Scholar
  6. 6.
    Patani GA, LaVoie EJ (1996) Chem Rev 96:3147CrossRefGoogle Scholar
  7. 7.
    Siebert CD (2004) Chem Unserer Zeit 38:320CrossRefGoogle Scholar
  8. 8.
    Tai C-L, Hung M-S, Pawar VD, Tseng S-L, Song J-S, Hsieh W-P, Chiu H-H, Wu H-C, Hsieh M-T, Kuo C-W, Hsieh C-C, Tsao J-P, Chao Y-S, Shia K-S (2008) Org Biomol Chem 6:447CrossRefGoogle Scholar
  9. 9.
    Oberdorf C, Schepmann D, Vela JM, Diaz JL, Holenz J, Wünsch B (2008) J Med Chem 51:6531CrossRefGoogle Scholar
  10. 10.
    Chao J, Taveras AG, Aki CJ (2009) Tetrahedron Lett 50:5005CrossRefGoogle Scholar
  11. 11.
    Bitter I, Dossenbach MRK, Brook S, Feldman PD, Metcalfe S, Gagiano CA, Füredi J, Bartko G, Janka Z, Banki CM, Kovacs G, Breier A (2004) Prog Neuropsychopharmacol Biol Psychiatry 28:173CrossRefGoogle Scholar
  12. 12.
    Cohen H, Loewenthal U, Matar M, Kotler M (2001) Br J Psychiatry 179:167CrossRefGoogle Scholar
  13. 13.
    Alvir JMJ, Lieberman JA, Safferman AZ, Schwimmer JL, Schaaf JA (1993) N Engl J Med 329:162CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Fuller LS, Iddon B, Smith KA (1997) J Chem Soc Perkin Trans 1 22:3465Google Scholar
  16. 16.
    Corey EJ, Suggs JW (1975) Tetrahedron Lett 16:2647CrossRefGoogle Scholar
  17. 17.
    Agarwal S, Tiwari HP, Sharma JP (1990) Tetrahedron 46:4417CrossRefGoogle Scholar
  18. 18.
    Srebnik M, Ramachandran P, Brown HC (1988) J Org Chem 53:2916CrossRefGoogle Scholar
  19. 19.
    Vaino AR, Szarek WA (1996) Chem Commun 2351Google Scholar
  20. 20.
    Corey EJ, Venkateswarlu A (1972) J Am Chem Soc 94:6190CrossRefGoogle Scholar
  21. 21.
    Kende AS, Liu K, Kaldor I, Dorey G, Koch K (1995) J Am Chem Soc 117:8258CrossRefGoogle Scholar
  22. 22.
    Prakash C, Saleh S, Blair IA (1989) Tetrahedron Lett 30:19CrossRefGoogle Scholar
  23. 23.
    Scholl M, Ding S, Lee CW, Grubbs RH (1999) Org Lett 1:953Google Scholar
  24. 24.
    Grubbs RH, Chang S (1998) Tetrahedron 54:4413CrossRefGoogle Scholar
  25. 25.
    Trnka TM, Grubbs RH (2000) Acc Chem Res 34:18CrossRefGoogle Scholar
  26. 26.
    Sheddan NA, Mulzer J (2006) Org Lett 8:3101CrossRefGoogle Scholar
  27. 27.
    Sheddan NA, Arion VB, Mulzer J (2006) Tetrahedron Lett 47:6689CrossRefGoogle Scholar
  28. 28.
    Kawai T, Shida Y, Yoshida H, Abe J, Iyoda T (2002) J Mol Catal A Chem 190:33CrossRefGoogle Scholar
  29. 29.
    Milstein D, Stille JK (1978) J Am Chem Soc 100:3636CrossRefGoogle Scholar
  30. 30.
    Jyotirmayee D, Stellios A, Cossy J (2007) Adv Synth Catal 349:152CrossRefGoogle Scholar
  31. 31.
    Hoffman TJ, Rigby JH, Arseniyadis S, Cossy J (2008) J Org Chem 73:2400CrossRefGoogle Scholar
  32. 32.
    Corey EJ, Bakshi RK, Shibata S (1987) J Am Chem Soc 109:5551CrossRefGoogle Scholar
  33. 33.
    Wu S-H, Liao PY, Dong L, Chen ZQ (2008) Inflamm Res 57:430CrossRefGoogle Scholar
  34. 34.
    Decker Y, McBean G, Godson C (2009) Am J Physiol Cell Physiol 296:C1420CrossRefGoogle Scholar
  35. 35.
    Aliberti J, Serhan C, Sher A (2002) J Exp Med 196:1253CrossRefGoogle Scholar
  36. 36.
    Sodin-Semrl S, Taddeo B, Tseng D, Varga J, Fiore S (2000) J Immunol 164:2660Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.UCD School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical BiologyUniversity College DublinBelfield, Dublin 4Ireland

Personalised recommendations