Advertisement

Homogeneous Catalysis with Metal Complexes in the Chemical Industry and Foodstuffs Chemistry

  • Gheorghe Duca
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 102)

Abstract

Out of the numerous reactions of homogeneous catalysis (oxidation, polymerization, cracking, alkylation, oligomerization, isomerization, etc.), only some oxidation reactions (with dioxygen, hydrogen peroxide, hydroperoxides, and some oxygen-containing oxidants), related to industrial processes or those that could be used in this field, will be briefly considered here. This limitation is connected with the specifics of this book, and with the fact that a number of reviews and books have been published [1–10], devoted more generally aspect to homogeneous catalysis with metal complexes used in industry.

Keywords

Lipid Oxidation Muscular Tissue Terephthalic Acid Homogeneous Catalysis Cyclohexane Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.L. Khidekel, V.E. Wasserberg, J. Mendeleev Chem. Soc. 22, 73 (1977) [Russian]Google Scholar
  2. 2.
    I. Pasquon, La Chim. a l’Industria 59, 184 (1977)Google Scholar
  3. 3.
    G.W. Parshall, J. Mol. Catal. 4, 243 (1978)Google Scholar
  4. 4.
    G.W. Parshall, Homogeneous Catalysis (Wiley, New York, 1980)Google Scholar
  5. 5.
    R.A. Sheldon, J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds (Academic, New York, 1981)Google Scholar
  6. 6.
    W. Keim, Chem. Ind. 36, 397 (1984)Google Scholar
  7. 7.
    W. Keim, in Fundamental Research in Homogeneous Catalysis, vol. 4 (Plenum Press, London, 1984), pp. 131–144Google Scholar
  8. 8.
    W. Keim, in Industrial Applications of Homogeneous Catalysis. ed. by A. Mortreux, F. Petit, (D. Reidel, Dordrecht, 1988), pp. 335–347Google Scholar
  9. 9.
    J. Falbe, H. Bahrmann, J. Chem. Educ. 61, 961 (1984)Google Scholar
  10. 10.
    H. Bönnemann, Österr. Chem. Z. 85(2), 29 (1984)Google Scholar
  11. 11.
    G.W. Parshall, S.D. Ittel, Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes (Wiley, New York, 1992) p. 342Google Scholar
  12. 12.
    B. Cornils, W.A. Herrmann, Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Two Volumes (VCH, Weinheim, 1996)Google Scholar
  13. 13.
    S. Bhaduri, D. Mukesh, Homogeneous Catalysis: Mechanisms and Industrial Applications (Wiley, New York, 2000)Google Scholar
  14. 14.
    κ.L. Hill, in Activation and Catalytic Reactions of Alkanes, ed. by κ.L. Hill (Mir, Moscow, 1992), pp. 265–307Google Scholar
  15. 15.
    T.G. Traylor, S. Tsuchiya, Inorg. Chem. 26, 1338 (1987)Google Scholar
  16. 16.
    C.L. Hill, R.B. Brown Jr, J. Am. Chem. Soc. 108, 536 (1986)Google Scholar
  17. 17.
    R.B. Brown, R. Renneke, C.L. Hill, Prepr. Am. Chem. Soc., Div. Pet. Chem. 32, 205 (1987)Google Scholar
  18. 18.
    M. Faraj, C.L. Hill, J. Chem. Soc. Chem. Commun. 1497 (1987)Google Scholar
  19. 19.
    C.L. Hill, R.F. Renneke, M. Faraj, R.B. Brown Jr, in The Role of Oxygen in Chemistry and Biology, ed. by W. Ando, Y. Morooka (Elsevier, Amsterdam, 1988), p. 185Google Scholar
  20. 20.
    M. Faraj, C.-H. Lin, C.L. Hill, New J. Chem. 12, 745 (1988)Google Scholar
  21. 21.
    J.T. Groves, W.J. Kruper Jr, R.C. Haushalter, J. Am. Chem. Soc. 102, 6375 (1980)Google Scholar
  22. 22.
    J.T. Groves, T.E. Nemo, J. Am. Chem. Soc. 105, 6243 (1983)Google Scholar
  23. 23.
    B.C. Schardt, C.L. Hill, J. Am. Chem. Soc. 102, 6374 (1980)Google Scholar
  24. 24.
    J.A. Smegal, C.L. Hill, J. Am. Chem. Soc. 105, 2920 (1983)Google Scholar
  25. 25.
    R.B. Brown Jr, M.M. Williamson, C.L. Hill, Inorg. Chem. 26, 1602 (1987)Google Scholar
  26. 26.
    J.T. Groves, D.V. Subramanian, J. Am. Chem. Soc. 106, 2177 (1984)Google Scholar
  27. 27.
    J. Halpern, Inorg. Chim. Acta. 100, 41 (1985)Google Scholar
  28. 28.
    J. Halpern, in Fundamental Research in Homogeneous Catalysis, vol. 1, ed. by A.E. Shilov, (Gordon and Brench, New York, 1986), p. 393Google Scholar
  29. 29.
    C.L. Hill, J.A. Smegal, Nouv. J. Chem. 6, 287 (1982)Google Scholar
  30. 30.
    C.L. Hill, J.A. Smegal, T.J. Henly, J. Org. Chem. 48, 3277 (1983)Google Scholar
  31. 31.
    D.H.R. Barton, N. Ozbalik, in Activation and Catalytic Reactions of Alkanes, ed. by κ.L. Hill (Mir, Moscow, 1992), pp. 302–329Google Scholar
  32. 32.
    T.J. McMurry, J.T. Groves, in Cytochrome P-450: Structure Mechanism and Biochemistry, ed. by P. Ortiz de Mantellano (Plenum Press, New York, 1985)Google Scholar
  33. 33.
    D.H.R. Barton, M.J. Gastiger, W.B. Montherwell, J. Chem. Soc. Chem. Commun. 41 (1983)Google Scholar
  34. 34.
    D.H.R. Barton, J. Boivin, W.B. Montherwell, N. Ozbalik, K.M. Schwartzentruber, K. Jankowski, Nouv. J. Chim. 10, 387 (1986)Google Scholar
  35. 35.
    D.H.R. Barton, J. Boivin, P.L.E. Coupanec, J. Chem. Soc. Chem. Commun. 1379 (1987)Google Scholar
  36. 36.
    C. Sheu, A. Sobkowiak, L. Zhang, N. Ozbalik, D.H.R. Barton, D.T. Sawyer, J. Am. Chem. Soc. 111, 8030 (1989)Google Scholar
  37. 37.
    C. Sheu, S.A. Richert, P. Cofré, B. Ross, Jr., A. Sobkowiak, D.T. Sawyer, J.A. Kanofsky, J. Am. Chem. Soc. 112, 1936 (1990)Google Scholar
  38. 38.
    C. Sheu, D.T. Sawyer, J. Am. Chem. Soc. 112, 8212 (1990)Google Scholar
  39. 39.
    H.-C. Tung, C. Kang, D.T. Sawyer, J. Am. Chem. Soc. 114, 3445 (1992)Google Scholar
  40. 40.
    U. Schuchardt, C.E.Z. Krähembühl, W.A. Carvalho, New J. Chem. 15, 955 (1991)Google Scholar
  41. 41.
    D.H.R. Barton, D.K. Taylor, Izv. AN Rossii. Ser. Khim. [Rev. Acad. Sci. Rus. Chem. Ser.] 595 (1995)Google Scholar
  42. 42.
    F. Minisci, F. Fontana, S. Araneo, F. Recupero, S. Banfi, S. Quici, J. Am. Chem. Soc. 117, 226 (1995)Google Scholar
  43. 43.
    A.K. Suresh, M.M. Sharma, T. Sridhar, Ind. Eng. Chem. Res. 39(11), 3958–3997 (2000)Google Scholar
  44. 44.
    W. Kanjina, W. Trakarnpruk, J. Met. Mater. Miner. 20(2), 29–34 (2010)Google Scholar
  45. 45.
    Ch.A. Tolman, J.D. Druminer, M.J. Nappa, N. Herron, in Activation and Catalytic Reactions of Alkanes, ed. by κ.L. Hill (Mir, Moscow, 1992), pp. 330–405Google Scholar
  46. 46.
    D.W Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use (R.E. Krieger, Malabar, 1984)Google Scholar
  47. 47.
    P.E. Ellis, J.E. Lyons, Coord. Chem. Rev. 105, 181 (1990)Google Scholar
  48. 48.
    A. Malldotti, R. Amadelli, C. Bartocci, V. Carassiti, E. Polo, G. Varani, Coord. Chem. Rev. 125, 143 (1993)Google Scholar
  49. 49.
    K.S. Suslick, R.A. Watson, New J. Chem. 16, 633 (1992)Google Scholar
  50. 50.
    A. Maldotti, C. Bartocci, R. Amadelli, E. Polo, P. Battioni, D. Mansuy, J. Chem. Soc. Chem. Commun. 1487 (1991)Google Scholar
  51. 51.
    L. Weber, I. Imiolezyk, G. Haufe, D. Rehorek, H. Hennig, J. Chem. Soc. Chem. Commun. 301 (1992)Google Scholar
  52. 52.
    L. Weber, R. Hommel, J. Behling, G. Haufe, H. Hennig, J. Am. Chem. Soc. 116, 2400(1994)Google Scholar
  53. 53.
    M. Hoshino, K. Ueda, M. Takahashi, M. Yamaji, Y. Hama, J. Chem. Soc. Faraday Trans. 88, 405 (1992)Google Scholar
  54. 54.
    A. Maldotti, C. Bartocci, G. Varani, A. Molinari, P. Battioni, D. Mansuy, Inorg. Chem. 35, 1126 (1996)Google Scholar
  55. 55.
    B.N. Gorbunov, L.S. Ilina, M.A. Sheinin, V.V. Konov, Chemical Industry. Ser. Production and Treatment of Plastic Masses. Chemicals for Polymers Production. Review (NIITEKhIM, Moscow, 1990), pp. 1–27 [Russian]Google Scholar
  56. 56.
    N.N. Kundo, N.P. Keyer, Zh. Fiz. Khim. [J. Phys. Chem.] 42, 1352 (1968) [Russian]Google Scholar
  57. 57.
    N.N. Kundo, N.P. Keyer, G.V. Glazneva, Kinetika I kataliz [Kinetics Catal.] 8, 1325 (1967) [Russian]Google Scholar
  58. 58.
    A.D. Simonov, N.P. Keyer, N.N. Kundo, Kinetika I kataliz [Kinetics Catal.] 14, 988 (1973) [Russian]Google Scholar
  59. 59.
    A.K. Yatsimirskii, B.I. Kozlyak, A.S. Erokhin, Kinetika I kataliz [Kinetics Catal.] 29, 352 (1988) [Russian]Google Scholar
  60. 60.
    B.I. Kozlyak, A.S. Krokhin, A.K. Yatsimirskii, Izv. AN SSSR [Rev. Acad. Sci. USSR] 4, 815 (1986) [Russian]Google Scholar
  61. 61.
    O. Sygeru Chemistry of Sulphur Organic Compounds (Chemistry Publications, Moscow, 1975), p. 98. [Russian transl.]Google Scholar
  62. 62.
    T.J. Wallace, A. Schriesheim, H.B. Jonassen, Chem. Ind. 18, 734 (1963)Google Scholar
  63. 63.
    B.I. Kozlyak, A.S. Erokhin, V.F. Borodkin, Izv. VUZov. Khim i khim. Tekhnol. [Univ. Rev. Chem. and Chem. Technol.] 23, 39 (1980) [Russian]Google Scholar
  64. 64.
    A.N. Lazovenko, V.A. Ignatov, V.B. Maizlish, Izv. VUZov. Khim i khim. Tekhnol. [Univ. Rev. Chem. and Chem.Technol.] 24, 685 (1981) [Russian]Google Scholar
  65. 65.
    R.J. Sheehan, Terephthalic acid, dimethyl terephthalate, and isophthalic acid, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2002)Google Scholar
  66. 66.
    B. Rohland, T. Pyl, Wiss. Z. Ernst-Moritz-Arndt-Univ. Greifswald. Math.-Nat. wiss. Reihe. 35(1), 55 (1986)Google Scholar
  67. 67.
    P.B. Cheah, D.A. Ledward, J. Food Sci. 62(6), 1135–1139 (1997)Google Scholar
  68. 68.
    H.D. Belitz, W. Grosch, Food Chemistry (Springer, Berlin, 1987)Google Scholar
  69. 69.
    V.N. Ushakova, Stability of Foodstuffs Lipids (Agropromizdat, Moscow, 1988) [Russian]Google Scholar
  70. 70.
    J. Kanner, Meat Sci. 36, 169–189 (1994)Google Scholar
  71. 71.
    J.M.C. Gutteridge, B. Halliwell, Trends Biochem. Sci. 15(4), 129–135 (1990)Google Scholar
  72. 72.
    J. Kanner, in Lipid Oxidation in Food, ed. by A.J.St. Angelo (American Chemical Society, Washington, 1992), pp. 55–73Google Scholar
  73. 73.
    E.A. Decker, H.O. Hultin, in Lipid Oxidation in Food (American Chemical Society, Washington, 1992), pp. 33–54Google Scholar
  74. 74.
    J.I. Gray, R.L. Crackel, in The Chemistry of Muscle Based Foods, ed. by D.E. Johnston, M.K. Knight, D.A. Ledward (Royal Society of Chemistry, Cambridge, 1992), pp. 145–168Google Scholar
  75. 75.
    J.I. Gray, E.A. Gomaa, D.J. Buckley, Meat Sci. 43, 111–123 (1996)Google Scholar
  76. 76.
    J. Kanner, in Lipid Oxidation in Food, ed. by A.J.St. Angelo (American Chemical Society, Washington, 1992), pp. 55–73Google Scholar
  77. 77.
    M.G. Simic, J. Environ. Sci. Health 9, 113 (1991)Google Scholar
  78. 78.
    J. Kanner, S. Harel, Arch. Biochem. Biophys. 237, 314 (1985)Google Scholar
  79. 79.
    M. Chance, L.C. Kirmar, M. Power, B. Chance, Biochemistry 215, 1259 (1986)Google Scholar
  80. 80.
    C.P. Baron, H.J. Andersen, Myoglobin-induced lipid oxidation. A review. J. Agric. Food Chem. 50, 3887–3897 (2002)Google Scholar
  81. 81.
    S. Harel, J. Kanner, Free Radic. Res. Commun. 5, 21 (1988)Google Scholar
  82. 82.
    J. Kanner, J.B. German, J.E. Kinsella, Crit. Rev. Food Sci. Nutr. 25, 317 (1987)Google Scholar
  83. 83.
    D. Galaris, E. Cadenas, P. Hochstein, Biochem. Biophys. Res. Commun. 160, 1162 (1989)Google Scholar
  84. 84.
    I. Solar, J. Dulitzky, N. Shaklai, Arch. Biochem. Biophys. 283, 81 (1990)Google Scholar
  85. 85.
    M.G. Simic, S.V. Jovanovic, E. Niki, in Lipid Oxidation in Food, ed. by A.J.St. Angelo (American Chemical Society, Washington, 1992), pp. 14–32Google Scholar
  86. 86.
    R.G. Berger, F. Drawert, H. Kollmansberger, S. Nitz, B. Schraufstetter, J. Agric. Food. Chem. 33, 232 (1985)Google Scholar
  87. 87.
    E. Frankel, Prog. Lipid Res. 23, 197 (1984)Google Scholar
  88. 88.
    J.B. German, H. Zhang, R. Berger, in Lipid Oxidation in Food, ed. by A.J.St. Angelo (American Chemical Society, Washington, 1992), pp. 74–92Google Scholar
  89. 89.
    M.G. Simic, M. Karel (eds), Autoxidation in Food and Biological Systems (Plenum Press, New York, 1980), p. 659Google Scholar
  90. 90.
    A.J.St. Angelo, M.E. Bailey (eds), Warmed-Over Flavor of Meat (Academic, Orlando, 1987), p. 294Google Scholar
  91. 91.
    A. Asghar, J.I. Gray, D.J. Buckley, A.M. Pearson, A.M. Boosen, Food Technol. 42(6), 102 (1988)Google Scholar
  92. 92.
    J. Kanner, J.B. German, J.E. Kinsella, Crit. Rev. Food Sci. Nutr. 25, 317 (1987)Google Scholar
  93. 93.
    P.B. Addis, S.W. Park, in Food Toxicology: A Perspective on the Relative Risk, ed. by S.L. Taylor, R.A. Scanlan (Marcel Dekker, New York, 1989), pp. 297–330Google Scholar
  94. 94.
    H.B. Dunford, Free Radic. Biol. Med. 3, 405 (1987)Google Scholar
  95. 95.
    D.L. Bakkeren, C.M.H. Jeu Jaspars, C. Van Der Heul, H.G. Van Eijk, Int. J. Biochem. 17, 925 (1985)Google Scholar
  96. 96.
    T. Hazell, J. Sci. Food Agric. 33, 1049 (1982)Google Scholar
  97. 97.
    E.A. Decker, C.-H. Huang, J.E. Osinchek, H.O. Hultin, J. Food Biochem. 13, 179 (1989)Google Scholar
  98. 98.
    E.A. Decker, H.O. Hultin, J. Food Sci. 55, 947 (1990)Google Scholar
  99. 99.
    J. Kanner, B. Hazan, L. Doll, J. Agric. Food Chem. 36, 412 (1988)Google Scholar
  100. 100.
    B.R. Schricker, D.D. Miller, J.R. Stouffer, J. Food Sci. 47, 740 (1982)Google Scholar
  101. 101.
    J.O. Igene, J.A. King, A.M. Pearson, J.I. Gray, J. Agric. Food Chem. 27, 838 (1979)Google Scholar
  102. 102.
    B.R. Schricker, D.D. Miller, J. Food Sci. 48, 1340, 1349 (1983)Google Scholar
  103. 103.
    E.A. Decker, H.O. Hultin, in Lipid Oxidation in Food, ed. by A.J.St. Angelo (American Chemical Society, Washington, 1992), pp. 33–54Google Scholar
  104. 104.
    R.F. Boyer, C.J. Mccleary, Free Radic. Biol. Med. 3, 389 (1987)Google Scholar
  105. 105.
    E.A. Decker, H.O. Hultin, J. Food Sci. 55, 951 (1990)Google Scholar
  106. 106.
    J. Kanner, L. Doll, J. Agric. Food Chem. 39, 247 (1991)Google Scholar
  107. 107.
    E.A. Decker, B. Welch, J. Agric. Food Chem. 38, 674 (1990)Google Scholar
  108. 108.
    S. Apte, P.A. Morrissey, Food Chem. 25, 127 (1987)Google Scholar
  109. 109.
    C.C. Winterbourn, J. Biochem. 182, 625 (1979)Google Scholar
  110. 110.
    D.A. Baldwin, E.R. Jenny, P. Aisen, J. Biol. Chem. 259, 13391 (1984)Google Scholar
  111. 111.
    M. Ozaki, T. Kawabata, M. Awai, Biochem. J. 250, 589 (1988)Google Scholar
  112. 112.
    M.J. O’Connell, R.J. Ward, H. Baum, T.J. Peters, Biochem. J. 229, 135 (1985)Google Scholar
  113. 113.
    S.H. Yong, N. Karel, J. Am. Oil Chem. Soc. 55, 352 (1978)Google Scholar
  114. 114.
    T. Ohshima, S. Wada, C. Koizumi, Nippon Suisan Gakkaishi 54, 2165 (1988)Google Scholar
  115. 115.
    J. Kanner, M.A. Salan, S. Harel, J. Shegalovich, J. Agric. Food Chem. 39, 242 (1991)Google Scholar
  116. 116.
    C.C. Winterbourn, Biochem. J. 210, 15 (1983)Google Scholar
  117. 117.
    J. Kanner, S. Harel, B. Hazan, J. Agric. Food Chem. 34, 506 (1986)Google Scholar
  118. 118.
    J. Kanner, F. Sofer, S. Harel, L. Doll, J. Agric. Food Chem. 36, 415 (1988)Google Scholar
  119. 119.
    E. Graf, J.W. Eaton, Free Radic. Biol. Med. 8, 61 (1990)Google Scholar
  120. 120.
    J.R. Mahoney, E. Graf, J. Food Sci. 51, 1293 (1986)Google Scholar
  121. 121.
    F. Shahidi, L.J. Rubin, L.L. Diosady, N. Kassam, J.C.-L.-S. Fong, Food Chem. 21, 145 (1986)Google Scholar
  122. 122.
    J.P. Roozen, Food Chem. 24, 167 (1987)Google Scholar
  123. 123.
    K.L. Empson, T.P. Labuza, E. Graf, J. Food Sci. 56, 560 (1991)Google Scholar
  124. 124.
    H. Faraji, E.A. Decker, J. Food Sci. 56, 1038 (1991)Google Scholar
  125. 125.
    H. Faraji, E.A. Decker, D.K. Aaron, J. Agric. Food Chem. 39, 1288 (1991)Google Scholar
  126. 126.
    J. Kanner, I. Bartov, M. Salan, L. Doll, J. Agric. Food Chem. 38, 601 (1990)Google Scholar
  127. 127.
    S.V. Jovanovic, M.G. Simic, in Oxygen Radicals in Biology and Medicine, ed. by M.G. Simic, K.A. Taylor, J.F. Ward, C. Von Sonntag (Plenum Press, New York, 1988), pp. 115–122Google Scholar
  128. 128.
    E.P.L. Hunter, M.F. Desrosiers, M.G. Simic, Free Radic. Biol. Med. 6, 581 (1989)Google Scholar
  129. 129.
    J.B. German, Adv. Exp. Med. Biol. 459, 23–50 (1999)Google Scholar
  130. 130.
    M.E. Bailey, K.W. Um, in Lipid Oxidation in Food. ed. by A.J.St. Angelo (American Chemical Society, Washington, 1992), pp. 122–139Google Scholar
  131. 131.
    C.D. Evans, H.A. Moser, P.M. Cooney, J.E. Hodge, J. Am. Oil Chem. Soc. 35, 84 (1958)Google Scholar
  132. 132.
    M.E. Camire, M.P. Dougherty, J. Food Sci. 63, 516–518 (1998)Google Scholar
  133. 133.
    M.E. Camire, M.P. Dougherty, H. Osborn, D.K. Avis-Dentici, J. Briggs. Simple Phenolic Compounds as Antioxidants for Extruded Oat Cereals. Abstract 50A-38 (IFT, Chicago, 1999)Google Scholar
  134. 134.
    V.K. Viscidi, M.E. Camire, M.P. Dougherty, J. Briggs, Complex phenolic compounds reduce lipid oxidation in extruded oat cereals. Lebensm.-Wiss. Technol. 37, 789–796 (2004)Google Scholar
  135. 135.
    T. Garde-Cerdán, C. Ancín-Azpilicueta, Trends Food Sci. Technol. 17(8), 438–447 (2006)Google Scholar
  136. 136.
    M.R. Salinas, G.L. Alonso, G. Navarro, F. Pardo, J. Jimeno, M.D. Huerta, Am. J. Enol. Viticult. 47(2), 134–144 (1996)Google Scholar
  137. 137.
    A.K. Rodopulo, Biochemistry of Wine-Making (Food Industry, Moscow, 1971) [Russian]Google Scholar
  138. 138.
    Z.N. Kishkovskii, I.M. Skurikhin, Chemistry of Wine (Food Industry, Moscow, 1976) [Russian]Google Scholar
  139. 139.
    J. Ribereau-Gayon, E. Peynaud, P. Sudraud, P. Ribereau-Gayon, Traité d’oenologie. Sciences et techniques du vin. T.1. (Dunod, Paris, 1972)Google Scholar
  140. 140.
    M.N. Zaprometov, Principles of Phenol Compounds Biochemistry (Vysshaya shkola, Moscow, 1974) [Russian]Google Scholar
  141. 141.
    G.G. Valuiko, Biochemistry and Technology of Red Wine (Food. Industry, Moscow, 1973) [Russian]Google Scholar
  142. 142.
    V.L. Kretovich, M.A. Metlitskii, N.I. Bokuchaeva, N.I. Skobeleva, Z.N. Kishkovskii, G.S. Ilyin, R.V. Pheniksova, Technical Biochemistry (Vysshaya shkola, Moscow, 1973)Google Scholar
  143. 143.
    M.A. Amerine, H.W. Berg, W.V. Cruess, The Technology of Wine Making (Avi Publishing, Westport, 1972), p. 802Google Scholar
  144. 144.
    V. Radovanovic, Technologija vina (Beograd, Gradevinska knjiga, 1970)Google Scholar
  145. 145.
    M.V. Moreno-Arribas, P.M. Carmen (eds), Wine Chemistry and Biochemistry (Springer, New York, 2009)Google Scholar
  146. 146.
    P. Ribéreau-Gayon, Y. Glories, A. Maujean, D. Dubourdieu, Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, vol. 2, 2nd edn, (Wiley, Chichester, 2006)Google Scholar
  147. 147.
    G.G. Valuiko. Biochemistry and technology of red wine making, (Food Industry Publishing, Moscow, 1973), p. 296, [Russian]Google Scholar
  148. 148.
    A.Ya. Sychev, G.G. Duca, Wine-Making and Wine-Growing in Moldova (Kishinev, 1985), 12, p. 38. [Russian]Google Scholar
  149. 149.
    A.Ya Sychev, S.O. Travin, G.G. Duca, Yu.I. Scurlatov, Catalytic Reactions and Environmental Protection (Kishinev, Stiinta, 1983), p. 272Google Scholar
  150. 150.
    G.G. Duca, B.S. Gaina, O.V. Covaliova, V.V. Covaliov, M.V. Gonta, Ecologically Pure Wine Production (Stiinta Publishing, Chisinau, 2004), p. 432 [Russian]Google Scholar
  151. 151.
    A.Ya. Sychev, Yu.V. Scutaru, G.G. Duca, Zh. Fiz. Khim. [J. Phys. Chem.] 61, 2264 (1987) [Russian]Google Scholar
  152. 152.
    A.Ya. Sychev, T.A. Postolatii, G.G. Duca, M.V. Gonta, Patent SU1159946. 1985–06–07Google Scholar
  153. 153.
    M. Gonta, in Bioantioxidant. Book of Abstr. Chernogolovka, (1983), p. 12Google Scholar
  154. 154.
    Gh. Duca, A. Mereuta, M. Gonta, C. Cojocaru, in Proc. of 2rd Int. Conf. on Environmental Engineering and Management. Iasi, 2004, pp. 771–780Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gheorghe Duca
    • 1
  1. 1.Academy of Sciences of MoldovaChisinauMoldova

Personalised recommendations