Vortex Dynamics in Superconductors Without Inversion Symmetry

  • Corneliu F. Miclea
  • Ana-Celia Mota
  • Manfred Sigrist
Part of the Lecture Notes in Physics book series (LNP, volume 847)


In this chapter we give an overview on some recent experimental results on vortex dynamics in the non-centrosymmetric superconductors \(\hbox{CePt}_3\hbox{Si}\) and \(\hbox{Li}_2\hbox{Pt}_3\hbox{B}\). In both compounds the flux creep from a metastable vortex configuration is anomalously slow—slower than in any other superconductor. Additionally, \(\hbox{Li}_2\hbox{Pt}_3\hbox{B}\)  shows very strong avalanche-like flux release after waiting times of several hours at millikelvin temperatures. Since critical currents are also low, the origin of these properties cannot be simply attributed to conventional flux pinning by defects. We speculate that both properties might be connected with crystalline twinning of the samples. We show that twin boundaries in non-centrosymmetric superconductors can host states with broken time reversal symmetry which can carry fractionally quantized flux lines. These flux lines are strongly pinned to the twin boundaries such that they impede the usual flux motion without affecting the critical current.


Creep Rate Twin Boundary Critical Current Flux Line Time Reversal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank E. Bauer, R. Cardoso, T. Cichorek, C.A. McElroy, M.B. Maple, M. Nicklas, A. Prokofiev, T.A. Sayles, F. Steglich and B.J. Taylor for contributions and discussions. This work was financially supported by the Swiss Nationalfonds, the NCCR MaNEP and the German Research Foundation (DFG).


  1. 1.
    Miclea, C.F., Mota, A.C., Nicklas, M., Cardoso, R., Steglich, F., Sigrist, M., Bauer, E.: Phys Rev B 81, 014527 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Miclea C.F., Mota A.C., Sigrist M. Steglich F, Sayles T.A., Taylor B.J., McElroy C., Maple M.B. Phys Rev B 80, 132502 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Takeuchi, T., Tsujin, M., Yasuda, T., Hashimoto, S., Settai, R., Onuki, Y.: J Magn Magn Mater 310, 557 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Bauer, E., Hilscher, G., Michor, H., Paul, Ch., Scheidt, E.W., Gribanov, A., Seropegin, Yu., Noel, H., Sigrist, M., Rogl, P.: Phys Rev Lett 92, 027003 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Bauer, E., Hilscher, G., Michor, H., Paul, Ch., Scheidt, E.W., Gribanov, A., Seropegin, Yu., Noel, H., Sigrist, M., Rogl, P.: Phys Rev Lett 92, 027003 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Tinkham, M.: Introduction to Superconductivity. McGraw-Hill, Inc., New York (1996)Google Scholar
  7. 7.
    Badica, P., Kondo, T., Togano, K.: J Phys Soc Jpn 74, 1014 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Togano, K., Badica, P., Nakamori, Y., Orimo, S., Takeya, H., Hirata, K.: Phys Rev Lett 93, 247004 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Cichorek T. et al., to be published.Google Scholar
  10. 10.
    Sigrist, M., Agterberg, D.: Prog Theor Phys 102, 965 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Aoki, Y., Tayama, T., Sakakibara, T., Kuwahara, K., Iwasa, K., Kohgi, M., Higemoto, W., Maclaughlin, D.E., Sugawara, H., Sato, H.: J Phys Soc Jpn 76, 051006 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Iniotakis, C., Fujimoto, S., Sigrist, M.: J Phys Soc Jpn 77, 083701 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Amann, A., Mota, A.C., Maple, M.B., Löhneysen, H.v.: Phys Rev B 57, 3640 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Dumont E.M.M. Phd. Thesis ETH13938 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Corneliu F. Miclea
    • 1
  • Ana-Celia Mota
    • 2
  • Manfred Sigrist
    • 3
  1. 1.Max-Planck-Institute for Chemical Physics of SolidsDresdenGermany
  2. 2.Laboratory for Solid State Physics, ETH ZurichZurichSwitzerland
  3. 3.Institute for Theoretical Physics, ETH ZurichZurichSwitzerland

Personalised recommendations