Advertisement

The Impact of Perceived Cognitive Effectiveness on Perceived Usefulness of Visual Conceptual Modeling Languages

  • Kathrin Figl
  • Michael Derntl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6998)

Abstract

Users’ perceptions and beliefs are relevant for the adoption of conceptual modeling languages in practice. This paper examines the relationship between user perception of the quality of a conceptual modeling language from a cognitive point of view and its perceived usefulness. The article builds on Moody’s framework of quality characteristics of visual modeling languages. By means of an empirical study with 198 user ratings of diagrams drawn with different modeling languages used in the e-learning domain, we provide evidence that users’ perception of criteria such as perceptual discriminability, graphic economy, a balanced combination of text and symbols, and semiotic clarity influence perceived usefulness of visual conceptual modeling languages. These findings and their implications for practice and research are discussed.

Keywords

Modeling Language Instructional Design Semantic Quality Dual Code Visual Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gemino, A., Wand, Y.: A framework for empirical evaluation of conceptual modeling techniques. Requirements Engineering 9(4), 248–260 (2004)CrossRefGoogle Scholar
  2. 2.
    Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: Current state and future directions. Data and Knowledge Engineering 15(3), 243–276 (2005)CrossRefGoogle Scholar
  3. 3.
    Boot, E.W., Nelson, J., van Merriënboer, J., Gibbons, A.S.: Stratification, elaboration, and formalization of design documents: Effects on the production of instructional materials. British Journal of Educational Technology 38(5), 917–933 (2007)CrossRefGoogle Scholar
  4. 4.
    Hirschheim, R., Klein, H.K., Lyytinen, K.: Information Systems Development and Data Modeling: Conceptual and Philosophical Foundations. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  5. 5.
    Recker, J., Rosemann, M., Green, P., Indulska, M.: Do ontological deficiencies in modeling grammars matter. Management Information Systems Quarterly 35(1) (2011)Google Scholar
  6. 6.
    Sonderegger, A., Sauer, J.: The influence of design aesthetics in usability testing: Effects on user performance and perceived usability. Applied Ergonomics 41(3), 403–410 (2010)CrossRefGoogle Scholar
  7. 7.
    Moody, D.L.: The physics of notations: Towards a scientific basis for constructing visual notations in software engineering. IEEE Transactions on Software Engineering 35(5), 756–779 (2009)CrossRefGoogle Scholar
  8. 8.
    Moody, D.L., Heymans, P., Matulevicius, R.: Improving the effectiveness of visual representations in requirements engineering: An evaluation of i* visual syntax. In: Proceedings of the 17th IEEE International Requirements Engineering Conference, RE 2009, pp. 171–180. IEEE Computer Society, Washington, DC, USA (2009)CrossRefGoogle Scholar
  9. 9.
    Moody, D., Hillegersberg, J.: Software Language Engineering, pp. 16–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the BPMN 2.0 visual notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Figl, K., Mendling, J., Strembeck, M., Recker, J.: On the cognitive effectiveness of routing symbols in process modeling languages. In: Aalst, W., Mylopoulos, J., Rosemann, M., Shaw, M.J., Szyperski, C., Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. Lecture Notes in Business Information Processing, vol. 47, pp. 230–241. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  13. 13.
    Schön, D.: The Reflective Practitioner. How professionals think in action. Temple Smith, London, UK (1983)Google Scholar
  14. 14.
    Object Management Group: Unified Modeling Language (UML) 2.3 (2010), http://www.omg.org/spec/UML/2.3/
  15. 15.
    Cao, L., Ramesh, B., Rossi, M.: Are domain-specific models easier to maintain than uml models? IEEE Software 26(4), 19–21 (2009)CrossRefGoogle Scholar
  16. 16.
    Clark, H.H., Brennan, S.E.: Grounding in communication. In: Resnick, L.B., Levine, J.M., Teasley, S.D. (eds.) Perspectives on Socially Shared Cognition, pp. 127–149. American Psychological Association, Hyattsville (1991)CrossRefGoogle Scholar
  17. 17.
    Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A Pattern Language - Towns, Buildings, Construction. Oxford University Press, New York (1977)Google Scholar
  18. 18.
    Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design patterns: Abstraction and reuse of object-oriented design. In: European Conference on Object-Oriented Programming (ECOOP), Kaiserslautern, Germany, pp. 406–431 (1993)Google Scholar
  19. 19.
    Derntl, M., Botturi, L.: Essential use cases for pedagogical patterns. Computer Science Education 16(2), 137–156 (2006)CrossRefGoogle Scholar
  20. 20.
    Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modeling. IEEE Softw. 11, 42–49 (1994)CrossRefGoogle Scholar
  21. 21.
    Maes, A., Poels, G.: Evaluating quality of conceptual modelling scripts based on user perceptions. Data & Knowledge Engineering 63(3), 701–724 (2007)CrossRefGoogle Scholar
  22. 22.
    Krogstie, J., Sindre, G., Jorgensen, H.D.: Process models representing knowledge for action: a revised quality framework. European Journal of Information Systems 15(1), 91–102 (2006)CrossRefGoogle Scholar
  23. 23.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 13(3), 319–340 (1989)CrossRefGoogle Scholar
  24. 24.
    Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cognitive Science 11(1), 65–100 (1987)CrossRefGoogle Scholar
  25. 25.
    McDougall, S.J.P., Curry, M.B., Bruijn, O.D.: Measuring symbol and icon characteristics: Norms for concreteness, complexity, meaningfulness, familiarity, and semantic distance for 239 symbols. Behavior Research Methods, Instruments, & Computers 31(3), 487–519 (1999)CrossRefGoogle Scholar
  26. 26.
    Kelly, S., Pohjonen, R.: Worst practices for domain-specific modeling. IEEE Software 26(4), 22–29 (2009)CrossRefGoogle Scholar
  27. 27.
    Derntl, M., Parrish, P., Botturi, L.: Beauty and precision: Weaving complex educational technology projects with visual instructional design languages. International Journal on E-Learning 9(2), 185–202 (2010)Google Scholar
  28. 28.
    Gibbons, A.S., Brewer, E.: Elementary principles of design languages and design notation systems for instructional design. In: Spector, M., Wiley, D. (eds.) Innovations to Instructional Technology: Essays in Honor, Lawrence Erlbaum, New Jersey (2004)Google Scholar
  29. 29.
    Rawlings, A., van Rosmalen, P., Koper, R., , M., Rodrguez Artacho, M., Lefrere, P.: Cen/isss ws/lt learning technologies workshop - survey of educational modelling languages (emls) (2002), http://www.eifel.org/publications/standards/elearning-standard/cenissslt/emlsurvey
  30. 30.
    Botturi, L.: E2ML: A visual language for the design of instruction. Educational Technology Research and Development 54(3), 265–293 (2006)CrossRefGoogle Scholar
  31. 31.
    Caeiro-Rodríguez, M.: PoEML: A separation-of-concerns proposal to Instructional Design. In: Botturi, L., Stubbs, T. (eds.) Handbook of Visual Languages in Instructional Design: Theories and Practices, pp. 185–209. Information Science Reference, Hershey (2008)Google Scholar
  32. 32.
    Derntl, M., Motschnig-Pitrik, R.: coUML – A Visual Language for Modeling Cooperative Environments. In: Botturi, L., Stubbs, T. (eds.) Handbook of Visual Languages for Instructional Design: Theories and Practices, pp. 155–184. Information Science Reference, Hershey (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kathrin Figl
    • 1
  • Michael Derntl
    • 2
  1. 1.Institute for Information Systems and New MediaVienna University of Economics and BusinessAustria
  2. 2.Information Systems and DatabasesRWTH Aachen UniversityGermany

Personalised recommendations