Merging Relational Views: A Minimization Approach

  • Xiang Li
  • Christoph Quix
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6998)


Schema integration is the procedure to integrate several inter-related schemas to produce a unified schema, called the mediated schema. There are two major flavors of schema integration: data integration and view integration. The former deals with integrating multiple data sources to create a mediated query interface, while the latter aims at constructing a base schema, capable of supporting the source schemas as views. Our work builds upon previous approaches that address relational view integration using logical mapping constraints. Given a set of data dependencies over the source schemas as input, our approach produces a minimal information-preserving mediated schema with constraints, and it generates output mappings defining the source schemas as views. We extend previous approaches in several aspects. First, schema minimization is performed within a scope of Project-Join views that are information preserving and produce a smaller mediated schema than in existing work. Second, the input schema mapping language is expressive enough for not only query containment but also query equivalence. Third, source integrity constraints can be seamlessly incorporated into reasoning. Last but not least, we have evaluated our implementation over both real world data sets and a schema mapping benchmark.


Mapping Language View Integration Minimization Approach Relational View Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  2. 2.
    Alexe, B., Tan, W.C., Velegrakis, Y.: STBenchmark: towards a benchmark for mapping systems. PVLDB 1(1), 230–244 (2008)Google Scholar
  3. 3.
    Arenas, M., Pérez, J., Reutter, J.L., Riveros, C.: Foundations of schema mapping management. In: Proc. PODS, pp. 227–238 (2010)Google Scholar
  4. 4.
    Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)CrossRefGoogle Scholar
  5. 5.
    Bernstein, P.A., Melnik, S.: Model management 2.0: Manipulating richer mappings. In: Proc. SIGMOD, Beijing, China, pp. 1–12 (2007)Google Scholar
  6. 6.
    Biskup, J., Convent, B.: A formal view integration method. In: Proc. SIGMOD, Washington, D.C, pp. 398–407 (1986)Google Scholar
  7. 7.
    Casanova, M.A., Vidal, V.M.P.: Towards a sound view integration methodology. In: Proc. PODS, Atlanta, GA, pp. 36–47. ACM, New York (1983)Google Scholar
  8. 8.
    Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive generation of integrated schemas. In: Proc. SIGMOD, pp. 833–846 (2008)Google Scholar
  9. 9.
    Fagin, R.: Inverting schema mappings. ACM Transactions on Database Systems 32(4) (2007)Google Scholar
  10. 10.
    Fagin, R., Kolaitis, P., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theoretical Computer Science 336, 89–124 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J. ACM 31(4), 761–791 (1984)CrossRefzbMATHGoogle Scholar
  12. 12.
    Li, X., Quix, C., Kensche, D., Geisler, S.: Automatic schema merging using mapping constraints among incomplete sources. In: Proc. CIKM, pp. 299–308. ACM, New York (2010)Google Scholar
  13. 13.
    Li, X., Quix, C., Kensche, D., Geisler, S., Guo, L.: Automatic mediated schema generation through reasoning over data dependencies. In: Proc. ICDE (2011)Google Scholar
  14. 14.
    Melnik, S.: Generic Model Management: Concepts and Algorithms. PhD thesis, Universität Leipzig (2004)Google Scholar
  15. 15.
    Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting executable mappings in model management. In: Proc. SIGMOD, pp. 167–178. ACM Press, New York (2005)Google Scholar
  16. 16.
    Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The use of information capacity in schema integration and translation. In: Proc. VLDB, pp. 120–133 (1993)Google Scholar
  17. 17.
    Pottinger, R., Bernstein, P.A.: Schema merging and mapping creation for relational sources. In: Proc. EDBT (2008)Google Scholar
  18. 18.
    Quix, C., Kensche, D., Li, X.: Generic schema merging. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 127–141. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Radwan, A., Popa, L., Stanoi, I.R., Younis, A.A.: Top-k generation of integrated schemas based on directed and weighted correspondences. In: Proc. SIGMOD, pp. 641–654 (2009)Google Scholar
  20. 20.
    Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-go data integration systems. In: Proc. SIGMOD, pp. 861–874 (2008)Google Scholar
  21. 21.
    Spaccapietra, S., Parent, C.: View integration: A step forward in solving structural conflicts. IEEE Transactions on Knowledge and Data Engineering 6(2), 258–274 (1994)CrossRefGoogle Scholar
  22. 22.
    Spaccapietra, S., Parent, C., Dupont, Y.: Model independent assertions for integration of heterogeneous schemas. VLDB Journal 1(1), 81–126 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiang Li
    • 1
  • Christoph Quix
    • 1
  1. 1.Informatik 5 (Information Systems)RWTH Aachen UniversityAachenGermany

Personalised recommendations