Advertisement

Towards a Theory of Refinement for Data Migration

  • Bernhard Thalheim
  • Qing Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6998)

Abstract

We develop a theoretical framework for refining transformations occurring in the process of data migration. A legacy kernel can be discovered at a high-level abstraction which consolidates heterogeneous data sources in a legacy system. We then show that migration transformations are specified via the composition of two subclasses of transformations: property-preserving transformations and property-enhancing transformations at flexible levels of abstraction. By defining a refinement scheme with the notions of correct refinements for property-preserving and property-enhancing transformations, we are able to stepwise refine migration transformations and to prove the correctness of refinements. The result of this paper lays down a formal foundation for investigating data migration.

Keywords

Legacy System Abstract Model Object Type Concrete Model Migration Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rapid application development (RAD) for data migration – white paper solutions by Premier International (2004), http://www.premier-international.com/pdf/Applaud_White_Paper.pdf
  2. 2.
    Bisbal, J., Lawless, D., Wu, B., Grimson, J.: Legacy information systems: Issues and directions. IEEE Software 16(5), 103–111 (1999)CrossRefGoogle Scholar
  3. 3.
    Bisbal, J., Lawless, D., Wu, B., Grimson, J., Wade, V., Richardson, R., O’ Sullivan, D.: A survey of research into legacy system migration (1997)Google Scholar
  4. 4.
    Börger, E.: The ASM refinement method. In: FAC, vol. 15(2), pp. 237–257 (November 2003)Google Scholar
  5. 5.
    Börger, E., Stärk, R.F.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007), http://www.grappa.univ-lille3.fr/tata
  7. 7.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified attice model for static analysis of programs by construction or approximation of fixpoints. In: Principles of Programming Languages, pp. 238–252. ACM, New York (1977)Google Scholar
  8. 8.
    Howard, P., Potter, C.: Data migration in Global 2000, research, forecasts and survey results – a survey paper by Bloor Research (2007), http://www.bloorresearch.com/research/survey/876/data_migrtaion_survey.html
  9. 9.
    Immerman, N.: Expressibility as a complexity measure: results and directions. In: Second Structure in Complexity Conference, pp. 194–202 (1987)Google Scholar
  10. 10.
    Klettke, M., Thalheim, B.: Evolution and migration of information systems. In: The Handbook of Conceptual Modeling: Its Usage and Its Challenges, ch. 12, pp. 381–420. Springer, Berlin (2011)CrossRefGoogle Scholar
  11. 11.
    Otto, M.: The expressive power of fixed-point logic with counting. Journal of Symbolic Logic 61(1), 147–176 (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Parnas, D.: Software aging. In: Proceedings of the 16th International Conference on Software Engineering, pp. 279–287. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  13. 13.
    Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Schellhorn, G.: Verification of ASM refinements using generalized forward simulation. Journal of Universal Computer Science 7(11), 952–979 (2001)Google Scholar
  15. 15.
    Schewe, K.-D., Wang, Q.: A customised ASM thesis for database transformations. Acta Cybernetica 19(4), 765–805 (2010)zbMATHGoogle Scholar
  16. 16.
    Schmidt, D.A.: Binary relations for abstraction and refinement. In: Workshop on Refinement and Abstraction. Elsevier Electronic (1999)Google Scholar
  17. 17.
    Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wang, Q.: Logical Foundations of Database Transformations for Complex-Value Databases. Logos Verlag, Berlin (2010)Google Scholar
  19. 19.
    Wu, B., Lawless, D., Bisbal, J., Grimson, J., Wade, V., O’Sullivan, D., Richardson, R.: Legacy system migration: A legacy data migration engine. In: DATASEM 1997, pp. 129–138 (1997)Google Scholar
  20. 20.
    Xiao, R., Dillon, T., Chang, E., Feng, L.: Modeling and transformation of object-oriented conceptual models into XML schema. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 795–804. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bernhard Thalheim
    • 1
  • Qing Wang
    • 2
  1. 1.Department of Computer ScienceChristian-Albrechts-University KielGermany
  2. 2.Department of Information ScienceUniversity of OtagoDunedinNew Zealand

Personalised recommendations