Dijet Angular Distributions at \(\sqrt{s}=14\) TeV: A Phenomenology study

  • Nele Boelaert
Part of the Springer Theses book series (Springer Theses)


The LHC is designed to collide protons at a center of mass energy of 14 TeV. This energy will however only be reached after a long initial run at \(\sqrt{s} = 7\,\hbox{TeV}.\) Even though collisions at nominal energy are still far ahead in the future, it is very instructive to already explore at this moment the ultimate potential of the LHC at nominal energy.


Black Hole Angular Distribution Transverse Momentum Parton Shower Parton Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Boelaert, T. Å kesson, Dijet angular distributions at \(\sqrt{s} =14 \,\hbox{TeV}.\). EPJ C 66, 343–357 (2010) (hep-ph/09053961)ADSGoogle Scholar
  2. 2.
    N. Boelaert, Dijet angular distributions at \(\sqrt{s} =14 \,\hbox{TeV}.\) EPS-HEP. in Proceedings of Science, 2009Google Scholar
  3. 3.
    W.T. Giele, E.W.N. Glover, D.A. Kosower, Higher order corrections to jet cross sections in hadron colliders. Nucl. Phys. B403, 633 (1993) (hep-ph/9302225)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron–hadron collision. Phys. Rev. D68, 094002 (2003) (hep-ph/0307268)ADSGoogle Scholar
  5. 5.
    G. Arnison et al., Hadronic jet production at the CERN proton - anti-proton collider. Phys. Lett. B 132, 214 (1983) UA1 Collaboration,Google Scholar
  6. 6.
    Blazey G.C. et al. Run II Jet Physics in Proceedings of the Run II QCD and Weak Boson Physics Workshop, 2000, (hep-ex/0005012)Google Scholar
  7. 7.
    C.M. Harris, P. Richardson, B.R. Webber, CHARYBDIS: A black hole event generator. JHEP 0308, 033 (2003) (hep-ph/0307305)ADSCrossRefGoogle Scholar
  8. 8.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. JHEP 0207, 012 (2002) (hep-ph/0201195)ADSCrossRefGoogle Scholar
  9. 9.
    P.M. Nadolsky, H.L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.K. Tung, P.C. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D78, 013004 (2008)ADSGoogle Scholar
  10. 10.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. EPJ C63, 189–285 (2009)ADSGoogle Scholar
  11. 11.
    T. LeCompte, Level 1 Jet Efficiency Measurements Using the Tag and Probe Method Technical Report ATL-COM-PHYS-2007-0143. (CERN, Geneva, 2007)Google Scholar
  12. 12.
    T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006) (hep-ph/0603175)ADSCrossRefGoogle Scholar
  13. 13.
    F. Abe et al., Measurement of Dijet Angular Distributions by the Collider Detector at Fermilab. Phys. Rev. Lett. 77(27), 5336–5341 (1996) CDF CollaborationGoogle Scholar
  14. 14.
    B. Abbott et al., Measurement of Dijet angular distributions and search for quark compositeness. Phys. Rev. Lett. 80(4), 666–671 (1998) D0 collaborationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsLund UniversityLundSweden

Personalised recommendations