Introduction to QCD and Collider Physics

  • Nele Boelaert
Part of the Springer Theses book series (Springer Theses)


Quantum chromodynamics (QCD) is the theory of the strong interaction, describing the interactions of the quarks and gluons, using the SU(3) non-Abelian gauge theory of color charge.


Parton Shower Feynman Rule Parton Distribution Function Valence Quark Hard Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.W. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics. Cambridge Monographs on Particle Physics Nuclear Physics and Cosmology (Cambridge University Press, Cambridge, 1996)Google Scholar
  2. 2.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Boulder, CO, 1995)Google Scholar
  3. 3.
    C. Amsler et al., Review of particle physics. Phys. Lett. B667, 1 (2008)ADSGoogle Scholar
  4. 4.
    S. Bethke, \(\alpha_s\) at Zinnowitz 2004. Nuclear Physics B- Proceedings Supplements, 135 345–352 hep-ex/0407021 (2004)Google Scholar
  5. 5.
    J.D. Bjorken, Asymptotic sum rules at infinite momentum. Phys. Rev. 179, 1547–1553 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    R.P. Feynman, Photon-Hadron Interactions (WA Benjamin Reading Mass, New York, 1972)Google Scholar
  7. 7.
    G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B126, 298 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)ADSGoogle Scholar
  9. 9.
    V.N. Gribov, L.N. Lipatov, Yad. Fiz. 15, 781 (1972)Google Scholar
  10. 10.
    P.M. Nadolsky, H.L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.K. Tung, C.P. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D78, 013004 (2008)ADSGoogle Scholar
  11. 11.
    A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Physical gluons and high-ET jets. Phys. Lett. B604, 61–68 (2004) (hepph0410230)ADSGoogle Scholar
  12. 12.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. EPJ C 63, 189–285 (2009)ADSGoogle Scholar
  13. 13.
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics. Sov. Phys. JETP 3, 65–71 (1956)MathSciNetzbMATHGoogle Scholar
  14. 14.
    T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006) (hep-ph0603175)ADSCrossRefGoogle Scholar
  15. 15.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, The pomeranchuk singularity in nonabelian gauge theories. Sov. Phys. JETP 45, 199–204 (1977)MathSciNetADSGoogle Scholar
  16. 16.
    Y.Y. Balitsky, L.N. Lipatov, The pomeranchuk singularity in quantum chromodynamics. Sov. J. Nucl. Phys. 28, 822–829 (1978)Google Scholar
  17. 17.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Parton fragmentation and string dynamics. Phys. Rept. 97, 31–145 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    R.D. Field, S. Wolfram, A QCD model for \(\hbox{e}^+\hbox{e}^-\) annihilation. Nucl. Phys. B 213, 65–84 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. JHEP 05, 026 (2007) (hep-ph07103820)ADSGoogle Scholar
  20. 20.
    Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron–hadron collision. Phys. Rev. D68, 094002 (2003) (hep-ph0307268)ADSGoogle Scholar
  21. 21.
    W.T. Giele, E.W.N. Glover, D.A. Kosower, Higher order corrections to jet cross sections in hadron colliders. Nucl. Phys. B B403, 633 (1993) (hep-ph9302225)ADSCrossRefGoogle Scholar
  22. 22.
    L. Lönnblad, M. Sjödahl, Classical and non-classical ADD-phenomenology with high-ET jet observables at collider experiments. JHEP 0610, 088 (2006) (hep-ph/0608210)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsLund UniversityLundSweden

Personalised recommendations