Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Already in the sixth century BC, the Greeks believed that matter is composed of elementary particles. But it took until the discovery of the electron at the end of the ninetieth century to finally get a breakthrough in our understanding of the structure of matter, which forced the twentieth century into a rapid growth of theories and knowledge.

Keywords

Large Hadron Collidor Gauge Boson Compact Muon Solenoid Grand Unify Theory Large Extra Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Povh, K. Rith, C. Scholz, F. Zetsche, Particles and Nuclei (Springer, Heidelberg, 2003)Google Scholar
  2. 2.
    J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model Cambridge Monographs on Particle Physics Nuclear Physics and Cosmology (Cambridge University Press, Cambridge, 1996)Google Scholar
  3. 3.
    Super-Kamiokande Collaboration: Y. Fukuda, et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett 81(8) 1562–1567 (1998)Google Scholar
  4. 4.
    S.P. Martin, A Supersymmetry Primer, (1997) hep-ph/9709356Google Scholar
  5. 5.
    O.S. Bruning et al., LHC design report. Vol. I: The LHC main ring. CERN. CERN-2004-003-V-1. (2004)Google Scholar
  6. 6.
  7. 7.
    W.W. Armstrong, et al., ATLAS: Technical proposal for a general-purpose pp experiment at the Large Hadron Collider at CERN. CERN. CERN-LHCC-94-43 (1994)Google Scholar
  8. 8.
    CMS Collaboration. CMS, the compact muon solenoid: technical proposal. CERN, Geneva (1994)Google Scholar
  9. 9.
    ALICE Collaboration. ALICE: Technical proposal for a large ion collider experiment at the CERN LHC. CERN, Geneva (1995)Google Scholar
  10. 10.
    LHCb Collaboration LHCb: Technical Proposal. CERN, Geneva (1998)Google Scholar
  11. 11.
    C. Amsler et al., Review of particle physics. Phys. Lett. B667, 1 (2008)ADSGoogle Scholar
  12. 12.
    N. Boelaert, et al., Software design for prompt assessment of time-varying data quality. Technical Report ATL-COM-GEN-2010-002, CERN, Geneva (2010)Google Scholar
  13. 13.
    N. Boelaert, T. Åkesson, Dijet angular distributions at \(\sqrt{s} \,{=}\,14\,TeV.\) EPJ C 66, 343–357 (2010) hep-ph/09053961ADSCrossRefGoogle Scholar
  14. 14.
    N. Boelaert, Dijet angular distributions at \(\sqrt{s}\,{=}\,14\,\hbox{TeV},\) in EPS-HEP. Proceedings of science(2009)Google Scholar
  15. 15.
    N. Boelaert, G. Choudalakis, P.O. Deviveiros, E. Feng, H. Li, J. Poveda, L. Pribyl, F. Ruehr, S.L. Wu, ATLAS sensitivity to contact interactions and gravity mediated effects in large extra dimensions using dijet events at \(\sqrt{s}\,{=}\,7\,\hbox{TeV}.\) Technical Report ATL-COM-PHYS-2010-136, CERN, Geneva (2010)Google Scholar
  16. 16.
    N. Boelaert, Implementation of the GravADD generator in Athena. Technical Report ATL-PHYS-INT-2010-012, CERN, Geneva (2010)Google Scholar
  17. 17.
    N. Boelaert, R. Buckingham, S.L. Cheung, G. Choudalakis, T. Davidek, P.O. Deviveiros, E. Feng, M. Kaneda, J. Frost, H. Li, H. Peng, L. Pribyl, F. Ruehr, M. Shupe, K. Terashi, S.L. Wu, High-pT dijet angular distributions in pp interactions at \(\sqrt{s}\,{=}\, 7\,\hbox{TeV}\) measured with the ATLAS detector at the LHC. Technical Report ATL-COM-PHYS-2010-359, CERN, Geneva (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsLund UniversityLundSweden

Personalised recommendations