Advertisement

A Cache Trace Attack on CAMELLIA

  • Rishabh Poddar
  • Amit Datta
  • Chester Rebeiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7011)

Abstract

CAMELLIA is a 128 bit block cipher certified for its security by NESSIE and CRYPTREC. Yet an implementation of CAMELLIA can easily fall prey to cache attacks. In this paper we present an attack on CAMELLIA, which utilizes cache access patterns along with the differential properties of CAMELLIA’s s-boxes. The attack, when implemented on a PowerPC microprocessor having a 32 byte cache line size requires power traces from 216 different encryptions. Further, the work shows that this trace requirement reduces to 211 if a 64 byte cache line is used.

Keywords

Block Cipher Cache Line Fourth Round Feistel Cipher Feistel Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acıiçmez, O., Koç, Ç.K.: Trace-Driven Cache Attacks on AES (Short Paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Specifications of Camellia – a 128-bit Block Cipher (2001)Google Scholar
  3. 3.
    Bernstein, D.J.: Cache-timing Attacks on AES. Tech. rep. (2005)Google Scholar
  4. 4.
    Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES Power Attack Based on Induced Cache Miss and Countermeasure. In: ITCC (1), pp. 586–591. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  5. 5.
    Bonneau, J., Mironov, I.: Cache-Collision Timing Attacks Against AES. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Canteaut, A., Lauradoux, C., Seznec, A.: Understanding Cache Attacks. Research Report RR-5881, INRIA (2006), http://hal.inria.fr/inria-00071387/en/
  7. 7.
    Fournier, J.J.A., Tunstall, M.: Cache Based Power Analysis Attacks on AES. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 17–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Gallais, J.-F., Kizhvatov, I., Tunstall, M.: Improved Trace-Driven Cache-Collision Attacks against Embedded AES Implementations. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 243–257. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side Channel Cryptanalysis of Product Ciphers. J. Comput. Secur. 8(2,3), 141–158 (2000)CrossRefGoogle Scholar
  10. 10.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel (2002)Google Scholar
  13. 13.
    Rebeiro, C., Mukhopadhyay, D.: Cryptanalysis of CLEFIA Using Differential Methods with Cache Trace Patterns. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 89–103. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Research Center for Information Security National Institute of Advanced Industrial Science and Technology: Side-channel Attack Standard Evaluation Board Specification (Version 1.0) (2007)Google Scholar
  15. 15.
    Sony Corporation: The 128-bit Blockcipher CLEFIA : Algorithm Specification (2007)Google Scholar
  16. 16.
    Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Countermeasures. Journal of Cryptology 23(2), 37–71 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES Implemented on Computers with Cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of Block Ciphers Implemented on Computers with Cache. In: International Symposium on Information Theory and Its Applications, pp. 803–806 (2002)Google Scholar
  19. 19.
    Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rishabh Poddar
    • 1
  • Amit Datta
    • 1
  • Chester Rebeiro
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations