When Was It Written? Automatically Determining Publication Dates

  • Anne Garcia-Fernandez
  • Anne-Laure Ligozat
  • Marco Dinarelli
  • Delphine Bernhard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7024)


Automatically determining the publication date of a document is a complex task, since a document may contain only few intra-textual hints about its publication date. Yet, it has many important applications. Indeed, the amount of digitized historical documents is constantly increasing, but their publication dates are not always properly identified via OCR acquisition. Accurate knowledge about publication dates is crucial for many applications, e.g. studying the evolution of documents topics over a certain period of time.

In this article, we present a method for automatically determining the publication dates of documents, which was evaluated on a French newspaper corpus in the context of the DEFT 2011 evaluation campaign. Our system is based on a combination of different individual systems, relying both on supervised and unsupervised learning, and uses several external resources, e.g. Wikipedia, Google Books Ngrams, and etymological background knowledge about the French language. Our system detects the correct year of publication in 10% of the cases for 300-word excerpts and in 14% of the cases for 500-word excerpts, which is very promising given the complexity of the task.


Support Vector Machine Publication Date Cosine Similarity Training Corpus Support Vector Machine Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, P., Badin, F., Delorme, M., Devos, N., Papazoglou, S., Simard, J.: Décennie d’un article de journal par analyse statistique et lexicale. In: DEFT 2010, TALN (2010)Google Scholar
  2. 2.
    Blandine, C., Silberzstein, M.: Dictionnaires électroniques du français. Langue française 87 (1990)Google Scholar
  3. 3.
    De Jong, F., Rode, H., Hiemstra, D.: Temporal language models for the disclosure of historical text. In: Humanities, Computers and Cultural Heritage, p. 161 (2005)Google Scholar
  4. 4.
    Galibert, O.: Approches et méthodologies pour la réponse automatique à des questions adaptées à un cadre interactif en domaine ouvert. Ph.D. thesis, Université Paris-Sud 11, Orsay, France (2009)Google Scholar
  5. 5.
    Grouin, C., Forest, D., Paroubek, P., Zweigenbaum, P.: Présentation et résultats du défi fouille de texte DEFT2011. In: Actes TALN (2011)Google Scholar
  6. 6.
    Grouin, C., Forest, D., Sylva, L.D., Paroubek, P., Zweigenbaum, P.: Présentation et résultats du défi fouille de texte DEFT 2010: Oú et quand un article de presse a-t-il été écrit? In: Actes TALN (2010)Google Scholar
  7. 7.
    Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Kanhabua, N., Nørvåg, K.: Improving temporal language models for determining time of non-timestamped documents. In: Research and Advanced Technology for Digital Libraries, pp. 358–370 (2008)Google Scholar
  9. 9.
    Kanhabua, N., Nørvåg, K.: Using temporal language models for document dating. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5782, pp. 738–741. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Michel, J.B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., The Google Books Team, Pickett, J.P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M.A., Aiden, E.L.: Quantitative Analysis of Culture Using Millions of Digitized Books. Science 331(6014), 176–182 (2011)CrossRefGoogle Scholar
  11. 11.
    Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach - a case study in intensive care monitoring. In: Proceedings of ICML 1999, pp. 268–277. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  12. 12.
    Naji, N., Savoy, J., Dolamic, L.: Recherche d’information dans un corpus bruité (OCR). In: CORIA (2011)Google Scholar
  13. 13.
    Nørvåg, K.: Supporting temporal text-containment queries in temporal document databases. Data & Knowledge Engineering 49(1), 105–125 (2004)CrossRefGoogle Scholar
  14. 14.
    Nunberg, G.: Google’s Book Search: A Disaster for Scholars. The Chronicle of Higher Education (August 2009) (Online, accessed April 13, 2011)Google Scholar
  15. 15.
    Oger, S., Rouvier, M., Camelin, N., Kessler, R., Lefèvre, F., Torres-Moreno, J.: Système du LIA pour la campagne DEFT 2010: datation et localisation d’articles de presse francophones. In: DEFT 2010, TALN (2010)Google Scholar
  16. 16.
    Rosset, S., Galibert, O., Bernard, G., Bilinski, E., Adda, G.: The LIMSI participation to the QAst track. In: Working Notes of CLEF 2008 Workshop, Aarhus, Danemark (2008)Google Scholar
  17. 17.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: International Conference on New Methods in Language Processing, pp. 44–49 (1994)Google Scholar
  18. 18.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, Chichester (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anne Garcia-Fernandez
    • 1
  • Anne-Laure Ligozat
    • 1
    • 2
  • Marco Dinarelli
    • 1
  • Delphine Bernhard
    • 1
  1. 1.LIMSI-CNRSOrsayFrance
  2. 2.ENSIIEEvryFrance

Personalised recommendations