Skip to main content

Counting for Random Testing

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 7019)

Abstract

The seminal works of Wilf and Nijenhuis in the late 70s have led to efficient algorithms for counting and generating uniformly at random a variety of combinatorial structures. In 1994, Flajolet, Zimmermann and Van Cutsem have widely generalised and systematised the approach. This paper presents several applications of these powerful results to software random testing, and random model exploration.

Keywords

  • Software testing
  • random walks
  • combinatorics

References

  1. Aldous, D.: An introduction to covering problems for random walks on graphs. J. Theoret Probab. 4, 197–211 (1991)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Arnold, A.: Finite Transition Systems. Prentice-Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  3. Denise, A., Gaudel, M.C., Gouraud, S.D.: A generic method for statistical testing. In: IEEE Int. Symp. on Software Reliability Engineering (ISSRE), pp. 25–34 (2004)

    Google Scholar 

  4. Denise, A., Gaudel, M.C., Gouraud, S.D., Lassaigne, R., Peyronnet, S.: Uniform random sampling of traces in very large models. In: 1st International ACM Workshop on Random Testing, pp. 10–19 (July 2006)

    Google Scholar 

  5. Denise, A., Gaudel, M.C., Gouraud, S.D., Lassaigne, R., Oudinet, J., Peyronnet, S.: Coverage-biased random exploration of large models and application to testing. STTT, International Journal on Software Tools for Technology Transfer Online First, 26 pages (2011)

    Google Scholar 

  6. Denise, A., Zimmermann, P.: Uniform random generation of decomposable structures using floating-point arithmetic. Theoretical Computer Science 218, 233–248 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random generation of labelled combinatorial structures. Theoretical Computer Science 132, 1–35 (1994)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    MATH  CrossRef  Google Scholar 

  9. Gaudel, M.C., Denise, A., Gouraud, S.D., Lassaigne, R., Oudinet, J., Peyronnet, S.: Coverage-biased random exploration of large models. In: 4th ETAPS Workshop on Model Based Testing. Electronic Notes in Theoretical Computer Science, vol. 220(1), 10, pp. 3–14 (2008), invited lecture

    Google Scholar 

  10. Goldwurm, M.: Random generation of words in an algebraic language in linear binary space. Information Processing Letters 54(4), 229–233 (1995)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Gouraud, S.D., Denise, A., Gaudel, M.C., Marre, B.: A new way of automating statistical testing methods. In: IEEE International Conference on Automated Software Engineering (ASE), pp. 5–12 (2001)

    Google Scholar 

  12. Grosu, R., Smolka, S.A.: Monte-Carlo Model Checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  13. Nijenhuis, A., Wilf, H.S.: The enumeration of connected graphs and linked diagrams. J. Comb. Theory, Ser. A 27(3), 356–359 (1979)

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. Oudinet, J.: Uniform random walks in very large models. In: RT 2007: Proceedings of the 2nd International Workshop on Random Testing, pp. 26–29. ACM Press, Atlanta (2007)

    Google Scholar 

  15. Oudinet, J.: Approches combinatoires pour le test statistique à grande échelle. Tech. rep., LRI, Université Paris-Sud 11, Ph. D. thesis, 118 pages (November 2010), http://www.lri.fr/~oudinet/en/research.html#publications

  16. Oudinet, J.: Random exploration of models. Tech. Rep. 1534, LRI, Université Paris-Sud XI, 15 pages (June 2010)

    Google Scholar 

  17. Oudinet, J., Denise, A., Gaudel, M.C.: A new dichotomic algorithm for the uniform random generation of words in regular languages. In: Conference on random and exhaustive generation of combinatorial objects (GASCom), Montreal, Canada, 10 pages (September 2010) (to appear)

    Google Scholar 

  18. Oudinet, J., Denise, A., Gaudel, M.C., Lassaigne, R., Peyronnet, S.: Uniform Monte-Carlo model checking. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 127–140. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  19. Wilf, H.: A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects. Advances in Mathematics 24, 281–291 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 IFIP International Federation for Information Processing

About this paper

Cite this paper

Gaudel, MC. (2011). Counting for Random Testing. In: Wolff, B., Zaïdi, F. (eds) Testing Software and Systems. ICTSS 2011. Lecture Notes in Computer Science, vol 7019. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24580-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24580-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24579-4

  • Online ISBN: 978-3-642-24580-0

  • eBook Packages: Computer ScienceComputer Science (R0)