A Comprehensive Framework on Multidimensional Modeling

  • Oscar Romero
  • Alberto Abelló
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6999)


In this paper we discuss what current multidimensional design approaches provide and which are their major flaws. Our contribution lays in a comprehensive framework that does not focus on how these approaches work but what they do provide for usage in real data warehouse projects. So that, we do not aim at comparing current approaches but set up a framework (based on four criteria: the role played by end-user requirements and data sources, the degree of automation achieved and the quality of the output produced) highlighting their drawbacks, and the need for further research on this area.


Data Warehouse Conceptual Schema Comprehensive Framework Multidimensional Modeling Conceptual Schema Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Annoni, E., Ravat, F., Teste, O., Zurfluh, G.: Towards multidimensional requirement design. In: DaWaK 2006. LNCS, vol. 4081, pp. 75–84. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Böhnlein, M., vom Ende, A.U.: Deriving Initial Data Warehouse Structures from the Conceptual Data Models of the Underlying Operational Information Systems. In: Proc. of 2nd Int. Wksp on Data Warehousing and OLAP, pp. 15–21. ACM, New York (1999)Google Scholar
  3. 3.
    Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing Data Marts for Data Warehouses. ACM Trans. Soft. Eng. Method 10(4), 452–483 (2001)CrossRefGoogle Scholar
  4. 4.
    Cabibbo, L., Torlone, R.: A Logical Approach to Multidimensional Databases. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 183–197. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented Requirement Analysis for Data Warehouse Design. In: Proc. of 8th Int. Wksp on Data Warehousing and OLAP, pp. 47–56. ACM Press, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual Model for Data Warehouses. Int. Journal of Cooperative Information Systems 7(2-3), 215–247 (1998)CrossRefGoogle Scholar
  7. 7.
    Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Modeling. In: Proc. of 2nd Int. Wksp on Design and Management of Data Warehouses, p. 6. (2000)Google Scholar
  8. 8.
    Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering Multidimensional Structure in Relational Data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 138–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. John Wiley & Sons, Inc., Chichester (1996)Google Scholar
  10. 10.
    Kimball, R., Reeves, L., Thornthwaite, W., Ross, M.: The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data Warehouses. John Wiley & Sons, Inc., Chichester (1998)Google Scholar
  11. 11.
    Mazón, J., Trujillo, J., Lechtenborger, J.: Reconciling Requirement-Driven Data Warehouses with Data Sources Via Multidimensional Normal Forms. Data & Knowledge Engineering 23(3), 725–751 (2007)CrossRefGoogle Scholar
  12. 12.
    Moody, D., Kortink, M.: From Enterprise Models to Dimensional Models: A Methodology for Data Warehouse and Data Mart Design. In: Proc. of 2nd Int. Wksp on Design and Management of Data Warehouses. (2000)Google Scholar
  13. 13.
    Nebot, V., Llavori, R.B., Pérez-Martínez, J.M., Aramburu, M.J., Pedersen, T.B.: Multidimensional integrated ontologies: A framework for designing semantic data warehouses. J. Data Semantics 13, 1–36 (2009)CrossRefGoogle Scholar
  14. 14.
    Phipps, C., Davis, K.C.: Automating Data Warehouse Conceptual Schema Design and Evaluation. In: Proc. of 4th Int. Wksp on Design and Management of Data Warehouses., vol. 58, pp. 23–32. (2002)Google Scholar
  15. 15.
    Prat, N., Akoka, J., Comyn-Wattiau, I.: A UML-based Data Warehouse Design Method. Decision Support Systems 42(3), 1449–1473 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Romero, O., Abelló, A.: Automatic Validation of Requirements to Support Multidimensional Design. Data & Knowledge Engineering 69(9), 917–942 (2010)CrossRefGoogle Scholar
  17. 17.
    Romero, O., Abelló, A.: A Survey of Multidimensional Modeling Methodologies. Int. J. of Data Warehousing and Mining 5(2), 1–23 (2009)CrossRefGoogle Scholar
  18. 18.
    Romero, O.: Automating the Multidimensional Design of Data Warehouses. Ph.D. thesis, Universitat Politécnica de Catalunya, Barcelona, Spain (2010),
  19. 19.
    Romero, O., Abelló, A.: A Framework for Multidimensional Design of Data Warehouses from Ontologies. Data & Knowledge Engineering 69(11), 1138–1157 (2010)CrossRefGoogle Scholar
  20. 20.
    Song, I., Khare, R., Dai, B.: SAMSTAR: A Semi-Automated Lexical Method for Generating STAR Schemas from an ER Diagram. In: Proc. of the 10th Int. Wksp on Data Warehousing and OLAP, pp. 9–16. ACM, New York (2007)Google Scholar
  21. 21.
    Vrdoljak, B., Banek, M., Rizzi, S.: Designing Web Warehouses from XML Schemas. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 89–98. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Winter, R., Strauch, B.: A Method for Demand-Driven Information Requirements Analysis in DW Projects. In: Proc. of 36th Annual Hawaii Int. Conf. on System Sciences, pp. 231–239. IEEE, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oscar Romero
    • 1
  • Alberto Abelló
    • 1
  1. 1.Universitat Politècnica de CatalunyaBarcelonaTechBarcelonaSpain

Personalised recommendations