Ontologies and Functional Dependencies for Data Integration and Reconciliation

  • Abdelghani Bakhtouchi
  • Ladjel Bellatreche
  • Yamine Ait-Ameur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6999)


Integrating data sources is the key success of business intelligence systems. The exponential growth of autonomous data sources over the Internet and enterprise intranets makes the development of integration solutions more complex. This is due to two main factors: (i) the management of the source heterogeneity and (ii) the reconciliation of query results. To deal with the first factor, several research efforts proposed the use of ontologies to explicit semantic of each source. Two main trends are used to reconcile the query results: (i) the supposition that different entities of sources representing the same concept have the same key – a strong hypothesis that violates the autonomy of sources. (ii) The use of statistical methods which are not usually suitable for sensitive-applications. In this paper, we propose a methodology integrating sources referencing shared domain ontology enriched with functional dependencies (\(\mathcal{F}\mathcal{D}\)) in a mediation architecture. The presence of \(\mathcal{F}\mathcal{D}\) gives more autonomy of sources in choosing their primary keys and facilitates the result reconciliation. Our methodology is validated using dataset of Lehigh University Benchmark.


Functional Dependency Data Integration Query Result Query Engine Query Response Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases (1995)Google Scholar
  2. 2.
    Bellatreche, L., Ait Ameur, Y., Chakroun, C.: A design methodology of ontology based database applications. Logic Journal of the IGPL, 1–18 (2010)Google Scholar
  3. 3.
    Bellatreche, L., Xuan, D.N., Pierra, G., Dehainsala, H.: Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases. Computers in Industry Journal Elsevier 57(8-9), 711–724 (2006)CrossRefGoogle Scholar
  4. 4.
    Bleiholder, J., Naumann, F.: Data fusion. ACM Computing Surveys 411(1), 1–41 (2008)CrossRefGoogle Scholar
  5. 5.
    Calbimonte, J.P., Porto, F., Maria Keet, C.: Functional dependencies in owl abox. In: Brazilian Symposium on Databases (SBBD), pp. 16–30 (2009)Google Scholar
  6. 6.
    Calvanese, D., Giacomo, G., Lenzerini, M.: Identification constraints and functional dependencies in description logics. In: Proc. of IJCAI, pp. 155–160 (2001)Google Scholar
  7. 7.
    Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An ontology-based database for data intensive applications. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 497–508. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Dong, X.L., Naumann, F.: Data fusion - resolving data conflicts for integration. PVLDB 2(2), 1654–1655 (2009)Google Scholar
  9. 9.
    Fan, W.: Dependencies revisited for improving data quality. In: PODS, pp. 159–170 (2008)Google Scholar
  10. 10.
    Goh, C.H., Bressan, S., Madnick, E., Siegel, M.D.: Context interchange: New features and formalisms for the intelligent integration of information. ACM Transactions on Information Systems 17(3), 270–293 (1999)CrossRefGoogle Scholar
  11. 11.
    Hakimpour, F., Geppert, A.: Global Schema Generation Using Formal Ontologies. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 307–321. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D., Pollock, J., Rosenthal, A., Sikka, V.: Entreprise information integration: successes, challenges and controversies. In: SIGMOD, pp. 778–787 (2005)Google Scholar
  13. 13.
    Hong, J., Liu, W., Bell, D.A., Bai, Q.: Answering queries using views in the presence of functional dependencies. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp. 70–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Mena, E., Kashyap, V., Sheth, A.P., Illarramendi, A.: Observer: An approach for query processing in global information systems based on interoperation across pre-existing ontologies. In: CoopIS, pp. 14–25 (1996)Google Scholar
  15. 15.
    Mohania, M.K., Radha Krishna, P., Pavan Kumar, K.V.N.N., Karlapalem, K., Vincent, M.W.: Functional dependency driven auxiliary relation selection for materialized views maintenance. In: COMAD (2005)Google Scholar
  16. 16.
    Romero, O., Calvanese, D., Abello, A., Rodriguez-Muro, M.: Discovering functional dependencies for multidimensional design. In: ACM 12th Int. Workshop on Data Warehousing and OLAP (2009)Google Scholar
  17. 17.
    Saïs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method for data reconciliation. Journal of Data Semantics 12, 66–94 (2009)CrossRefGoogle Scholar
  18. 18.
    Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class citizens in description logics. J. of Automated Reasoning 40(2-3), 117–132 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Abdelghani Bakhtouchi
    • 1
  • Ladjel Bellatreche
    • 2
  • Yamine Ait-Ameur
    • 2
  1. 1.National High School for Computer Science (ESI)AlgiersAlgeria
  2. 2.LISI/ENSMA – Poitiers UniversityFuturoscopeFrance

Personalised recommendations