Abstract
Chip Multiprocessors (CMPs) mainly base their performance gains on exploiting thread-level parallelism. Consequently, powerful memory systems are needed to support an increasing number of concurrent threads. Conventional CMP memory systems do not account for thread interference which can result in reduced overall system performance. Therefore, conventional high bandwidth Miss Handling Architectures (MHAs) are not well suited to CMPs because they can create severe memory bus congestion. However, high miss bandwidth is desirable when sufficient bus bandwidth is available. This paper presents a novel, CMP-specific technique called the Adaptive Miss Handling Architecture (AMHA). If the memory bus is congested, AMHA improves performance by dynamically reducing the maximum allowed number of concurrent L1 cache misses of a processor core if this creates a significant speedup for the other processors. Compared to a 16-wide conventional MHA, AMHA improves performance by 12% on average for one of the workload collections used in this work.
Keywords
- Clock Cycle
- Processor Core
- Performance Impact
- Memory Latency
- Acceptance Threshold
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This work was supported by the Norwegian Metacenter for Computational Science (NOTUR).
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Hennessy, J.L., Patterson, D.A.: Computer Architecture - A Quantitative Approach, 4th edn. Morgan Kaufmann Publishers, San Francisco (2007)
Burger, D., Goodman, J.R., Kgi, A.: Memory Bandwidth Limitations of Future Microprocessors. In: ISCA 1996: Proc. of the 23rd An. Int. Symp. on Comp. Arch. (1996)
ITRS: Int. Tech. Roadmap for Semiconductors (2006), http://www.itrs.net/
Tuck, J., Ceze, L., Torrellas, J.: Scalable Cache Miss Handling for High Memory-Level Parallelism. In: MICRO 39: Proc. of the 39th An. IEEE/ACM Int. Symp. on Microarchitecture, pp. 409–422 (2006)
Kroft, D.: Lockup-free Instruction Fetch/Prefetch Cache Organization. In: ISCA 1981: Proc. of the 8th An. Symp. on Comp. Arch., pp. 81–87 (1981)
Farkas, K.I., Jouppi, N.P.: Complexity/Performance Tradeoffs with Non-Blocking Loads. In: ISCA 1994: Proc. of the 21st An. Int. Symp. on Comp. Arch., pp. 211–222 (1994)
Sohi, G.S., Franklin, M.: High-bandwidth Data Memory Systems for Superscalar Processors. In: ASPLOS-IV: Proc. of the Fourth Int. Conf. on Architectural Support for Programming Languages and Operating Systems, pp. 53–62 (1991)
Belayneh, S., Kaeli, D.R.: A Discussion on Non-Blocking/Lockup-Free Caches. SIGARCH Comp. Arch. News 24(3), 18–25 (1996)
Mutlu, O., Moscibroda, T.: Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors. In: MICRO 40: Proc. of the 40th An. IEEE/ACM Int. Symp. on Microarchitecture (2007)
Nesbit, K.J., Aggarwal, N.: L., J., Smith, J.E.: Fair Queuing Memory Systems. In: MICRO 39: Proc. of the 39th An. IEEE/ACM Int. Symp. on Microarchitecture, pp. 208–222 (2006)
Rafique, N., Lim, W.T., Thottethodi, M.: Effective Management of DRAM Bandwidth in Multicore Processors. In: PACT 2007: Proc. of the 16th Int. Conf. on Parallel Architecture and Compilation Techniques, pp. 245–258 (2007)
Shao, J., Davis, B.: A Burst Scheduling Access Reordering Mechanism. In: HPCA 2007: Proc. of the 13th Int. Symp. on High-Performance Comp. Arch. (2007)
Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.: Memory Access Scheduling. In: ISCA 2000: Proc. of the 27th An. Int. Symp. on Comp. Arch., pp. 128–138 (2000)
Qureshi, M.K., Patt, Y.N.: Utility-Based Cache Partitioning: A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches. In: MICRO 39: Proc. of the 39th An. IEEE/ACM Int. Symp. on Microarch., pp. 423–432 (2006)
Dybdahl, H., Stenstrm, P.: An Adaptive Shared/Private NUCA Cache Partitioning Scheme for Chip Multiprocessors. In: HPCA 2007: Proc. of the 13th Int. Symp. on High-Performance Comp. Arch. (2007)
Nesbit, K.J., Laudon, J., Smith, J.E.: Virtual Private Caches. In: ISCA 2007: Proc. of the 34th An. Int. Symp. on Comp. Arch., pp. 57–68 (2007)
Chang, J., Sohi, G.S.: Cooperative Cache Partitioning for Chip Multiprocessors. In: ICS 2007: Proc. of the 21st An. Int. Conf. on Supercomputing, pp. 242–252 (2007)
Scott, S.L., Sohi, G.S.: The Use of Feedback in Multiprocessors and Its Application to Tree Saturation Control. IEEE Trans. Parallel Distrib. Syst., 385–398 (1990)
Thottethodi, M., Lebeck, A., Mukherjee, S.: Exploiting Global Knowledge to achieve Self-tuned Congestion Control for k-ary n-cube Networks. IEEE Trans. on Parallel and Distributed Systems, 257–272 (2004)
Martin, M., Sorin, D., Hill, M., Wood, D.: Bandwidth Adaptive Snooping. In: HPCA 2002: Proc. of the 8th Int. Symp. on High-Performance Comp. Arch., p. 251 (2002)
SPEC: SPEC CPU 2000 Web Page, http://www.spec.org/cpu2000/
Luo, K., Gummaraju, J., Franklin, M.: Balancing Throughput and Fairness in SMT Processors. In: ISPASS (2001)
Snavely, A., Tullsen, D.M.: Symbiotic Jobscheduling for a Simultaneous Multithreading Processor. In: Arch. Support for Programming Languages and Operating Systems, pp. 234–244 (2000)
Eyerman, S., Eeckhout, L.: System-Level Performance Metrics for Multiprogram Workloads. IEEE Micro 28(3), 42–53 (2008)
Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.: The M5 Simulator: Modeling Networked Systems. IEEE Micro 26(4), 52–60 (2006)
JEDEC Solid State Technology Association: DDR2 SDRAM Specification (May 2006)
Cuppu, V., Jacob, B., Davis, B., Mudge, T.: A Performance Comparison of Contemporary DRAM Architectures. In: Proc. of the 26th Inter. Symp. on Comp. Arch., pp. 222–233 (1999)
Asanovic, K., et al.: The Landscape of Parallel Computing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183, EECS Department, University of California at Berkeley (December 2006)
Huh, J., Burger, D., Keckler, S.W.: Exploring the Design Space of Future CMPs. In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 199–210. Springer, Heidelberg (2001)
Zhao, L., Iyer, R., Illikkal, R., Moses, J., Makineni, S., Newell, D.: CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP Platforms. In: PACT 2007: Proc. of the 16th Int. Conf. on Parallel Architecture and Compilation Techniques, pp. 339–352 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jahre, M., Natvig, L. (2011). A High Performance Adaptive Miss Handling Architecture for Chip Multiprocessors. In: Stenström, P. (eds) Transactions on High-Performance Embedded Architectures and Compilers IV. Lecture Notes in Computer Science, vol 6760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24568-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-24568-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24567-1
Online ISBN: 978-3-642-24568-8
eBook Packages: Computer ScienceComputer Science (R0)