Reasoning about Liveness Properties in Event-B

  • Thai Son Hoang
  • Jean-Raymond Abrial
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6991)


Event-B is a formal method which is widely used in modelling safety critical systems. So far, the main properties of interest in Event-B are safety related. Even though some liveness properties, e,g, termination, are already within the scope of Event-B, more general liveness properties, e.g. progress or persistence, are currently unsupported. We present in this paper proof rules to reason about important classes of liveness properties. We illustrate our proof rules by applying them to prove liveness properties of realistic examples. Our proof rules are based on several proof obligations that can be implemented in a tool support such as the Rodin platform.


Event-B liveness properties formal verification tool support 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. International Journal on Software Tools for Technology Transfer (STTT) 12(6), 447–466 (2010)CrossRefGoogle Scholar
  3. 3.
    Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.) B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Reading (1988)zbMATHGoogle Scholar
  5. 5.
    Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420 (1999)Google Scholar
  6. 6.
    Groslambert, J.: Verification of LTL on B event systems. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 109–124. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in event-B. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hoang, T.S., Kuruma, H., Basin, D., Abrial, J.-R.: Developing topology discovery in Event-B. Sci. Comput. Program. 74(11-12), 879–899 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–923 (1994)CrossRefGoogle Scholar
  10. 10.
    Manna, Z., Pnueli, A.: Adequate proof principles for invariance and liveness properties of concurrent programs. Sci. Comput. Program. 4(3), 257–289 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83(1), 91–130 (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans. Program. Lang. Syst. 4(3), 455–495 (1982)CrossRefzbMATHGoogle Scholar
  13. 13.
    Peterson, G.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3), 115–116 (1981)CrossRefzbMATHGoogle Scholar
  14. 14.
    Yilmaz, E., Hoang, T.S.: Development of Rabin’s choice coordination in Event-B. Technical report, University of Dusseldorf, Proceedings of AVoCS 2010 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thai Son Hoang
    • 1
  • Jean-Raymond Abrial
  1. 1.Department of Computer ScienceSwiss Federal Institute of Technology Zurich (ETH-Zurich)Switzerland

Personalised recommendations