An Abstract Model for Proving Safety of Multi-lane Traffic Manoeuvres

  • Martin Hilscher
  • Sven Linker
  • Ernst-Rüdiger Olderog
  • Anders P. Ravn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6991)


We present an approach to prove safety (collision freedom) of multi-lane motorway traffic with lane-change manoeuvres. This is ultimately a hybrid verification problem due to the continuous dynamics of the cars. We abstract from the dynamics by introducing a new spatial interval logic based on the view of each car. To guarantee safety, we present two variants of a lane-change controller, one with perfect knowledge of the safety envelopes of neighbouring cars and one which takes only the size of the neighbouring cars into account. Based on these controllers we provide a local safety proof for unboundedly many cars by showing that at any moment the reserved space of each car is disjoint from the reserved space of any other car.


Multi-lane motorway traffic lane-change manoeuvre collision freedom abstract modelling spatial interval logic timed automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated vehicles. IEEE Transactions on Automatic Control 43, 522–539 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing and merging. Technical Report UCB-ITS-PRR-99-13, California Partners for Advanced Transit and Highways (PATH), Univ. of California at Berkeley (1999)Google Scholar
  3. 3.
    Werling, M., Gindele, T., Jagszent, D., Gröll, L.: A robust algorithm for handling traffic in urban scenarios. In: Proc. IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, pp. 168–173 (2008)Google Scholar
  4. 4.
    Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents. International Journal of Control 79, 395–421 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid systems based on l-complete approximations. Discrete Event Dynamic Systems 12, 83–107 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Moor, T., Raisch, J., Davoren, J.: Admissiblity criteria for a hierarchical design of hybrid systems. In: Proc. IFAD Conf. on Analysis and Design of Hybrid Systems, St. Malo, France, pp. 389–394 (2003)Google Scholar
  7. 7.
    Habets, L.C.G.J.M., Collins, P., van Schuppen, J.: Reachability and control synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on Automatic Control 51, 938–948 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Computer 18, 10–19 (1985)CrossRefGoogle Scholar
  9. 9.
    Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. Information Processing Letters 40, 269–276 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schäfer, A.: A Calculus for Shapes in Time and Space. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice-Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  12. 12.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Hoare, C.A.R.: Communicating sequential processes. CACM 21, 666–677 (1978)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hilscher, M., Linker, S., Olderog, E.R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic maenoeuvres. Report 79, SFB/TR 14 AVACS (2011); ISSN: 1860-9821,
  16. 16.
    Varaija, P.: Smart cars on smart roads: problems of control. IEEE Transactions on Automatic Control AC-38, 195–207 (1993)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hsu, A., Eskafi, F., Sachs, S., Varaija, P.: Protocol design for an automated highway system. Discrete Event Dynamic Systems 2, 183–206 (1994)CrossRefGoogle Scholar
  18. 18.
    Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed railway control system. IEEE Trans. on Software Engineering 26, 687–701 (2000)CrossRefGoogle Scholar
  19. 19.
    Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic Verification of Parametric Specifications with Complex Topologies. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-Hartmann, I., Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Schäfer, A.: Axiomatisation and decidability of multi-dimensional duration calculus. Information and Computation 205, 25–64 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Hilscher
    • 1
  • Sven Linker
    • 1
  • Ernst-Rüdiger Olderog
    • 1
  • Anders P. Ravn
    • 2
  1. 1.Department of Computing ScienceUniversity of OldenburgGermany
  2. 2.Department of Computer ScienceAalborg UniversityDenmark

Personalised recommendations