Histogram-Based Image Hashing for Searching Content-Preserving Copies

  • Shijun Xiang
  • Hyoung Joong Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6730)


Image hashing as a compact abstract can be used for content search. Towards this end, a desired image hashing function should be resistant to those content-preserving manipulations (including additive-noise like processing and geometric deformation operations). Most countermeasures proposed in the literature usually focus on the problem of additive noises and global affine transform operations, but few are resistant to recently reported random bending attacks (RBAs). In this paper, we address an efficient and effective image hashing algorithm by using the resistance of two statistical features (image histogram in shape and mean value) for those challenging geometric deformations. Since the features are extracted from Gaussian-filtered images, the hash is also robust to common additive noise-like operations (e.g., lossy compression, low-pass filtering). The hash uniqueness is satisfactory for different sources of images. With a large number of real-world images, we construct a hash-based image search system to show that the hash function can be used for searching content-preserving copies from the same source.


Hash Function Image Query Geometric Deformation Geometric Attack False Positive Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mihçak, M.K., Koval, O., Voloshynovskiy, S.: EURASIP 2007, Special Issue: Robust perceptual hashing of multimedia content (2007)Google Scholar
  2. 2.
    Venkatesan, R., Jakubowski, M.H.: Image hashing. In: DIMACS Conf. on Intellectual Property Protection, Piscataway, USA, NJ (April 2000)Google Scholar
  3. 3.
    Venkatesan, R., Koon, S.M., Jakubowski, M.H., Moulin, P.: Robust image hashing. In: Proc. IEEE Int. Conf. Image Processing, Vancouver, BC, Canada, pp. 664–666 (September 2000)Google Scholar
  4. 4.
    Jing, F., Li, M., Zhang, H.-J., Zhang, B.: An efficient and effective region-based image retrieval framework. IEEE Trans. Image Processing 13(5), 699–709 (2004)CrossRefGoogle Scholar
  5. 5.
    Mihçak, M.K., Venkatesan, R.: A Perceptual Audio Hashing Algorithm: A Tool for Robust Audio Identification and Information Hiding. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 51–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Özer, H., Sankur, B., Memon, N., Anarim, E.: Perceptual audio hashing functions. EURASIP Journal on Applied Signal Processing 12, 1780–1793 (2005)CrossRefGoogle Scholar
  7. 7.
    Dittmann, J., Steinmetz, A., Steinmetz, R.: Content-based digital signature for motion pictures authentication and content-fragile watermarking. In: Proc. IEEE Int. Conf. Multimedia Computing and Systems, Florence, Italy, pp. 209–213 (June 1999)Google Scholar
  8. 8.
    Coskun, B., Sankur, B., Memon, N.: Spatio-temporal transform based video hashing. IEEE Transactions on Multimedia 8(6), 1190–1208 (2006)CrossRefGoogle Scholar
  9. 9.
    Fridrich, J., Goljan, M.: Robust hash functions for digital watermarking. In: Proc. IEEE Int. Conf. Information Technology: Coding Computing, pp. 178–183 (March 2000)Google Scholar
  10. 10.
    Mihçak, M.K., Venkatesan, R.: Video watermarking using image hashing, Microsoft Research Tech. Rep. (2001)Google Scholar
  11. 11.
    Mihçak, M.K., Venkatesan, R.: New iterative geometric methods for robust perceptual image hashing. In: Proc. ACM Workshop Security and Privacy in Digital Rights Management, Philadelphia, PA, pp. 13–21 (November 2001)Google Scholar
  12. 12.
    Swaminathan, A., Mao, Y., Wu, M.: Image hashing resilient to geometric and filtering operations. In: Proc. IEEE Workshop on Multimedia Signal Processing, Siena, Italy (September 2004)Google Scholar
  13. 13.
    Lu, C.S., Hsu, C.Y.: Geometric distortion-resilient image hashing scheme and its applications on copy detection and authentication. Multimedia System 11(2), 159–173 (2005)CrossRefGoogle Scholar
  14. 14.
    Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE Transactions on Information Forensics and Security 1(2), 215–230 (2006)CrossRefGoogle Scholar
  15. 15.
    Monga, V., Mihçak, M.K.: Robust and secure image hashing via non-negative matrix factorizations. IEEE Transactions on Information Forensics and Security 2(3), 376–390 (2007)CrossRefGoogle Scholar
  16. 16.
    Licks, V., Jordan, R.: Geometric attacks on image watermarking systems. IEEE Multimedia 12(3), 68–78 (2005)CrossRefGoogle Scholar
  17. 17.
    Barni, M., D’Angelo, A., Merhav, N.: Expanding the class of watermark de-synchronization attacks. In: Proc. 9th ACM Multimedia and Security Workshop, Dallas, Texas, USA, pp. 195–204 (September 2007)Google Scholar
  18. 18.
    Voloshynovskiy, S., Deguillaume, F., Pun, T.: Multibit digital watermarking robust against local nonlinear geometrical distortions. In: Proc. IEEE Int. Conf. Image Processing, Thessaloniki, Greece, pp. 999–1002 (2001)Google Scholar
  19. 19.
    Xiang, S., Kim, H.J., Huang, J.: Invariant image watermarking based on statistical features in the low-frequency domain. IEEE Trans. Circuits and Systems for Video Technology 18(6), 777–790 (2008)CrossRefGoogle Scholar
  20. 20.
    Xiang, S., Kim, H.J., Huang, J.: Histogram-based image hashing scheme robust against geometric deformations. In: Proc. 9th ACM Multimedia and Security Workshop, Dallas, Texas, USA, pp. 121–128 (September 2007)Google Scholar
  21. 21.
    Schneider, M., Chang, S.-F.: A robust content based digital signature for image authentication. In: Proc. IEEE Int. Conf. Image Processing, Lausanne, Switzerland, vol. 3, pp. 227–230 (September 1996)Google Scholar
  22. 22.
    Ferman, A.M., Tekalp, A.M., Mehrotra, R.: Robust color histogram descriptors for video segment retrieval and identification. IEEE Trans. Image Processing 11(5), 497–508 (2002)CrossRefGoogle Scholar
  23. 23.
    Hamon, K., Schmucker, M., Zhou, X.: Histogram-based perceptual hashing for minimally changing video sequences. In: Proc. 2nd Int. Conf. Automated Production of Cross Media Content for Multi-Channel Distribution, Leeds, UK, pp. 236–241 (2006)Google Scholar
  24. 24.
    Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Processing 9(5), 889–896 (2000)CrossRefGoogle Scholar
  25. 25.
    Olmos, A., Kingdom, F.A.A.: McGill Calibrated Colour Image Database (2004),
  26. 26.
  27. 27.
  28. 28.
  29. 29.
    Radhakrishnan, R., Xiong, Z.Y., Memon, N.: On the security of the visual hash function. Journal of Electronic Imaging 14(1), 013011 (2005)CrossRefGoogle Scholar
  30. 30.
    Mao, Y., Wu, M.: Unicity distance of robust image hashing. IEEE Transactions on Information Forensics and Security 2(3), 462–467 (2007)CrossRefGoogle Scholar
  31. 31.
    Wu, M., Mao, Y., Swaminathan, A.: A signal processing and randomization perspective of robust and secure image hashing. In: Proc. IEEE Workshop on Statistical Signal Processing, Madison, WI, pp. 166–170 (August 2007)Google Scholar
  32. 32.
    Roy, S., Sun, Q.: Robust hash for detecting and localizing image tampering. In: Proc. IEEE Int. Conf. Image Processing, San Antonio, Texas, USA, vol. 6, pp. 117–120 (2007)Google Scholar
  33. 33.
    Weng, L., Preneel, B.t.: Attacking some perceptual image hash algorithms. In: Proc. IEEE Int. Conf. Multimedia and Expo., Beijing, China, pp. 879–882 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shijun Xiang
    • 1
    • 2
  • Hyoung Joong Kim
    • 3
  1. 1.Department of Electronic Engineering, School of Information Science and TechnologyJinan UniversityGuangzhouChina
  2. 2.State Key Laboratory of Information SecurityInstitute of Software, Chinese Academy of SciencesBeijingChina
  3. 3.CIST, Graduate School of Information Management and SecurityKorea UniversitySeoulKorea

Personalised recommendations