Skip to main content

A Faster Haplotyping Algorithm Based on Block Partition, and Greedy Ligation Strategy

  • Conference paper
  • 2585 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6840))

Abstract

Haplotype played a very important role in the study of some disease gene and drug response tests over the past years. However, it is both time consuming and very costly to obtain haplotypes by experimental way. Therefore haplotype inference was proposed which deduce haplotypes from the genotypes through computing methods. Some genetic models were presented to solve the haplotype inference problem, and Maximum Parsimony model was one of them, but at present the methods based on this principle are either simple greedy heuristic or exact ones, which are adequate only for moderate size instances. In this paper, we presented a faster greedy algorithm named FHBPGL applying partition and ligation strategy. Theoretical analysis shows that this strategy can reduce the running time for large scale dataset and following experiments demonstrated that our algorithm gained comparable accuracy compared to exact haplotyping algorithms with less time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International HapMap Consortium: The international HapMap project. Nature 426 789–796 (2003)

    Google Scholar 

  2. Gusfield, D.: An Overview of Combinatorial Methods for Haplotype Inference. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002. LNCS (LNBI), vol. 2983, pp. 9–25. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution 12(5), 921–927 (1995)

    Google Scholar 

  4. Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotyping interface for multiple linked single-nucleotide polymorphisms. Am J. Hum. Genet. 70(1), 157–169 (2002)

    Article  Google Scholar 

  5. Xing, E.P., Jordan, M.I., Sharan, R.: Bayesian haplotype inference via the Dirichlet process. Journal of Computational Biology (JCB) 14(3), 267–284 (2007)

    Article  MathSciNet  Google Scholar 

  6. Zhao, Y.Z., Xu, Y., Yao, X.H., et al.: A better block partition and ligation strategy for individual haplotyping. Bioinformatics 24(23), 2720–2725 (2008)

    Article  Google Scholar 

  7. Clark, A.: Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and Evolution 7(2), 111–122 (1990)

    Google Scholar 

  8. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Wang, L.S., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–1780 (2003)

    Article  Google Scholar 

  10. Lancia, G., Pinotti, C., Rizzi, R.: Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms. INFORMS J. Comp. 16, 348–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, Q., Che, H., Chen, G., Sun, G.: A Practical Algorithm for Haplotyping by Maximum Parsimony. Journal of Software 16(10), 1699–1707 (2005)

    Article  Google Scholar 

  12. Daly, M.J., et al.: High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001)

    Article  Google Scholar 

  13. Gabriel, S.B., et al.: The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002)

    Article  Google Scholar 

  14. Qin, Z.S., et al.: Partition-Ligation EM algorithm for haplotype inference with single nucleotide polymorphisms. Am. J. Hum. Genet. 71, 1242–1247 (2002)

    Article  Google Scholar 

  15. Scheet, P., Stephens, M.: A fast and flexible statistical model for largescale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006)

    Article  Google Scholar 

  16. Delaneau, O., et al.: ISHAPE: new rapid and accurate software for haplotyping. BMC Bioinformatics 8, 205 (2007)

    Article  Google Scholar 

  17. Rieder, M.J., et al.: Sequence variation in the human angiotensin converting enzyme. Nat. Genet. 22, 59–62 (1999)

    Article  Google Scholar 

  18. Hudson, R.R.: Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, X., Xu, Y., Yang, J. (2012). A Faster Haplotyping Algorithm Based on Block Partition, and Greedy Ligation Strategy. In: Huang, DS., Gan, Y., Premaratne, P., Han, K. (eds) Bio-Inspired Computing and Applications. ICIC 2011. Lecture Notes in Computer Science(), vol 6840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24553-4_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24553-4_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24552-7

  • Online ISBN: 978-3-642-24553-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics