Self-Stabilizing De Bruijn Networks

  • Andréa Richa
  • Christian Scheideler
  • Phillip Stevens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6976)

Abstract

This paper presents a dynamic overlay network based on the De Bruijn graph which we call Linearized De Bruijn (LDB) network. The LDB network has the advantage that it has a guaranteed constant node degree and that the routing between any two nodes takes at most O(logn) hops with high probability. Also, we show that there is a simple local-control algorithm that can recover the LDB network from any network topology that is weakly connected.

Keywords

Overlay Network Distribute Hash Table Virtual Node Linearization Rule Virtual Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov, E.: A generic scheme for building overlay networks in adversarial scenarios. In: Proc. of the 17th Intl. Parallel and Distributed Processing Symposium (IPDPS), p. 40 (2003)Google Scholar
  2. 2.
    Berns, A., Ghosh, S., Pemmaraju, S.V.: Brief announcement: a framework for building self-stabilizing overlay networks. In: Proc. of the 29th ACM Symposium on Principles of Distributed Computing (PODC), pp. 398–399 (2010)Google Scholar
  3. 3.
    Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for peer-to-peer systems. Parallel Processing Letters 20(1), 15–30 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp. 124–140. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Cramer, C., Fuhrmann, T.: Self-stabilizing ring networks on connected graphs. Technical Report 2005-5, System Architecture Group, University of Karlsruhe (2005)Google Scholar
  6. 6.
    De Bruijn, N.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)MATHGoogle Scholar
  7. 7.
    Fraigniaud, P., Gauron, P.: D2B: A De Bruijn based content-addressable network. Theoretical Computer Science 355(1), 65–79 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Time complexity of distributed topological self-stabilization: The case of graph linearization. In: Proc. of the 9th Latin American Theoretical Informatics Symposium, pp. 294–305 (2010)Google Scholar
  9. 9.
    Jacob, R., Richa, A., Scheideler, C., Schmid, S., Taeubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: Proc. of the 28th ACM Symposium on Principles of Distributed Computing (PODC), pp. 131–140 (2009)Google Scholar
  10. 10.
    Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A Self-stabilizing and Local Delaunay Graph Construction. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 771–780. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kaashoek, M., Karger, D.: Koorde: A Simple Degree-Optimal Distributed Hash Table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web. In: Proc. of the 29th ACM Symposium on Theory of Computing, STOC (1997)Google Scholar
  13. 13.
    Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-Chord: A self-stabilizing Chord overlay network. To appear in Proc. of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA (2011)Google Scholar
  14. 14.
    Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-Theoretic Analysis of Structured Peer-to-Peer Systems: Routing Distances and Fault Resilience. In: Proc. of the 2003 ACM SIGCOMM Conference, pp. 395–406 (2003)Google Scholar
  15. 15.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the butterfly. In: Proc. of the 21st ACM Symposium on Principles of Distributed Computing, PODC (2002)Google Scholar
  16. 16.
    Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-discrete approch. In: Proc. of the 15th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 50–59 (2003)Google Scholar
  17. 17.
    Onus, M., Richa, A., Scheideler, C.: Linearization: Locally Self-Stabilizing Sorting in Graphs. In: Proc. of the 9th Workshop on Algorithm Engineering and Experiments, ALENEX (2007)Google Scholar
  18. 18.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable network. In: Proc. of the ACM SIGCOMM Data Communication Festival (2001)Google Scholar
  19. 19.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Liu, H. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Scheideler, C., Schmid, S.: A distributed and oblivious heap. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 571–582. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer look-up protocol for internet applications. IEEE/ACM Transactions on Networking 11(1), 17–32 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andréa Richa
    • 1
  • Christian Scheideler
    • 2
  • Phillip Stevens
    • 1
  1. 1.Computer Science and Engineering, SCIDSEArizona State UniversityTempeUSA
  2. 2.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations