Advertisement

Wallpaper Maps

  • M. Douglas McIlroy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6875)

Abstract

A wallpaper map is a conformal projection of a spherical earth onto regular polygons with which the plane can be tiled continuously. A complete set of distinct wallpaper maps that satisfy certain natural symmetry conditions is derived and illustrated. Though all of the projections have been published before, some generalize to one-parameter families in which the sphere is pre-transformed by a conformal automorphism.

Keywords

conformal projection elliptic integral spherical tiling planar tiling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55. National Bureau of Standards (1965)Google Scholar
  2. 2.
    Adams, O.A.: Elliptic Functions Applied to Conformal World Maps. Special publication no. 112, U.S. Coast and Geodetic Survey (1925)Google Scholar
  3. 3.
    Adams, O.A.: Conformal Projection of the Sphere within a Square. Special publication no. 153, U.S. Coast and Geodetic Survey (1929)Google Scholar
  4. 4.
    Adams, O.A.: Conformal map of the world in a square. Bulletin Géodèsique, 461–473 (1936)Google Scholar
  5. 5.
    Bieberbach, L.: Conformal Mapping. Chelsea (1953), translated by F. SteinhardtGoogle Scholar
  6. 6.
    Coxeter, H.S.M.: Regular Polytopes. Dover, New York (1973), reprint of Macmillan edition of 1963 Google Scholar
  7. 7.
    Guyou, E.: Sur un nouveau système de projection de la sphère. Comptes Rendus de l’Acad/’emie des Sciences 102, 308–310 (1886)zbMATHGoogle Scholar
  8. 8.
    Lee, L.P.: Conformal Projections based on Elliptic Functions. Cartographica Monograph 16 (1976)Google Scholar
  9. 9.
    McIlroy, M.D.: Power series, power serious. Journal of Functional Programming 9, 325–337 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    McIlroy, M.D.: Wallpaper maps (2011), an extended version of the present paper, http://www.cs.dartmouth.edu/~doug/wallpaper.pdf
  11. 11.
    Pedoe, D.: Geometry: A Comprehensive Course. Dover, New York (1988)zbMATHGoogle Scholar
  12. 12.
    Peirce, C.S.: A quincuncial projection of the sphere. American Journal of Mathematics 2, 394–396 and one unpaginated plate (1879)Google Scholar
  13. 13.
    Schwarz, H.A.: Über einige abbildungsaufgaben. Journal für die reine un angewandte Mathematik 70, 105–120 (1869)CrossRefGoogle Scholar
  14. 14.
    Snyder, J.P.: Flattening the Earth. University of Chicago Press, Chicago (1997)Google Scholar
  15. 15.
    Snyder, J.P., Voxland, P.M.: An Album of Map Projections. Professional Paper 1453, U.S. Geological Survey (1989)Google Scholar
  16. 16.
    Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Douglas McIlroy
    • 1
  1. 1.Dartmouth CollegeHanoverUSA

Personalised recommendations