Causality in Structured Occurrence Nets

  • Jetty Kleijn
  • Maciej Koutny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6875)


Structured occurrence nets consist of multiple occurrence nets — each recording causality and concurrency in an execution of a component of a concurrent system. These occurrence nets are linked together by means of various types of relationships, aimed at representing dependencies between communicating and evolving sub-systems. In this paper, we investigate causality in the basic class of communication structured occurrence nets (cso-nets). We start by introducing the corresponding system-level model of communication structured Place Transition Nets (cspt-nets) which extend Place Transition Nets with an explicit structuring into communicating sub-systems and process interaction based on a combination of synchronous and asynchronous communication. After that we develop a cso-net based process semantics for cspt-nets showing that causality in cso-nets is underpinned by stratified order structures extending causal partial orders with weak causality.


concurrency occurrence net structured occurrence net place transition net semantical framework causality semantics process semantics synchronous and asynchronous communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbab, F.: A Channel-based Coordination Model for Component Composition. Mathematical Structures in Computer Science 14, 1–38 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory. Theoretical Computer Science 55, 87–136 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bruni, R., Montanari, U.: Zero-safe nets: Comparing the Collective and Individual Token Approaches. Information and Computation 156, 46–89 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bruni, R., Montanari, U.: Zero-Safe Nets, or Transition Synchronization Made Simple. Electronic Notes in Theoretical Computer Science 7, 55–74 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Christensen, S., Hansen, D.: Coloured Petri Nets Extended with Channels for Synchronous Communication. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 159–178. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  6. 6.
    Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Esparza, J., Heljanko, K.: Unfoldings: A Partial-Order Approach to Model Checking. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  8. 8.
    Gaifman, H., Pratt, V.R.: Partial Order Models of Concurrency and the Computation of Functions. In: LICS, pp. 72–85. IEEE Computer Society, Los Alamitos (1987)Google Scholar
  9. 9.
    Guillen-Scholten, J., Arbab, F., de Boer, F., Bonsangue, M.: Modeling the Exogenous Coordination of Mobile Channel-based Systems with Petri Nets. Electronic Notes in Theoretical Computer Science 154, 121–138 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  11. 11.
    Janicki, R., Koutny, M.: Invariants and Paradigms of Concurrency Theory. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 506, pp. 59–74. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  12. 12.
    Janicki, R., Koutny, M.: Semantics of Inhibitor Nets. Information and Computation 123, 1–16 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Information and Computation 190, 18–69 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Köhler-Bußmeier, M., Kudlek, M.: Linear Properties of Zero-Safe Nets with Debit Tokens. Fundamenta Informaticae 85, 329–342 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Koutny, M., Randell, B.: Structured Occurrence Nets: A Formalism for Aiding System Failure Prevention and Analysis Techniques. Fundamenta Informaticae 97, 41–91 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kummer, O.: A Petri Net View on Synchronous Channels. Petri Net Newsletter 56, 7–11 (1999)Google Scholar
  17. 17.
    McMillan, K.L.: A Technique of State Space Search Based on Unfoldings. Formal Methods in System Design 6, 45–65 (1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    Meyer, R., Khomenko, V., Strazny, T.: A Practical Approach to Verification of Mobile Systems Using Net Unfoldings. Fundamenta Informaticae 94, 439–471 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  20. 20.
    Randell, B.: Occurrence Nets Then and Now: The Path to Structured Occurrence Nets. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Randell, B., Koutny, M.: Failures: Their Definition, Modelling and Analysis. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 260–274. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jetty Kleijn
    • 1
  • Maciej Koutny
    • 2
  1. 1.LIACSLeiden UniversityLeidenThe Netherlands
  2. 2.School of Computing ScienceNewcastle UniversityNewcastle upon TyneUnited Kingdom

Personalised recommendations