Fault Tolerant Autonomic Computing Systems in a Chemical Setting

  • Jean-Pierre Banâtre
  • Christine Morin
  • Thierry Priol
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6875)


The chemical computing model was originally proposed as a simple and elegant parallel programming paradigm. Data are seen as molecules and computation as chemical reactions : if some molecules satisfy a predefined reaction condition, they are replaced by the product of the reaction. When no reaction is possible, a normal form is reached and the program terminates. In this paper, we describe how we can build fault tolerant autonomic systems in a chemical setting. We pay a particular attention to the chemical description of the simple and successful constructs for fault-tolerance such as the recovery block scheme by designing a generic chemical framework. Then, we apply this framework to the development of an autonomic mailing system... all this in a chemical setting.


Acceptance Test Chemical Description Main Solution Reaction Rule Primary Alternate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banâtre, J.P., Fradet, P., Le Métayer, D.: Gamma and the chemical reaction model: Fifteen years after. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 17–44. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Banâtre, J.P., Fradet, P., Radenac, Y.: Chemical specification of autonomic systems. In: Proc. of the 13th Int. Conf. on Intelligent and Adaptive Systems and Software Engineering (IASSE 2004) (2004)Google Scholar
  3. 3.
    Banâtre, J.P., Fradet, P., Radenac, Y.: Principles of chemical programming. In: Abdennadher, S., Ringeissen, C. (eds.) Proceedings of the 5th International Workshop on Rule-Based Programming (RULE 2004). ENTCS, vol. 124, pp. 133–147. Elsevier, Amsterdam (2005)Google Scholar
  4. 4.
    Banâtre, J.P., Fradet, P., Radenac, Y.: Generalised multisets for chemical programming. Mathematical Structures in Computer Science 16(4), 557–580 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Banâtre, J.P., Le Métayer, D.: Programming by multiset transformation. Communications of the ACM (CACM) 36(1), 98–111 (1993)CrossRefGoogle Scholar
  6. 6.
    Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Reading (1988)zbMATHGoogle Scholar
  7. 7.
    Fernandez, H., Priol, T., Tedeschi, C.: Decentralized Approach for Execution of Composite Web Services Using the Chemical Paradigm. In: IEEE 8th International Conference on Web Services (ICWS 2010), Miami, United States (July 2010)Google Scholar
  8. 8.
    Randell, B.: System structure for software fault tolerance. IEEE Transaction on Software Engineering 1(1), 220–232 (1975)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Randell, B., Xu, J.: The evolution of the recovery block concept. In: Lyu, M. (ed.) Software Fault Tolerance. John Wiley & Sons Ltd., Chichester (1995)Google Scholar
  10. 10.
    Ruiz Barradas, H.: Une approche à la dérivation formelle de systèmes en Gamma. Ph.D. thesis, Université de Rennes 1, France (July 1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jean-Pierre Banâtre
    • 1
  • Christine Morin
    • 1
  • Thierry Priol
    • 1
  1. 1.INRIARennes cedexFrance

Personalised recommendations