Short-Pulse Laser Diodes

  • Wolfgang G. Scheibenzuber
Part of the Springer Theses book series (Springer Theses)


Present research on GaN-based laser diodes is focused mainly on the extension of the emission wavelength range, especially towards green emission, and the improvement of maximum output power and efficiency. The principal device concept is the Fabry-Perot-type single-section ridge laser diode. Other device concepts, which have been extensively studied in the group-III-arsenide and -phosphide material systems, are scarcely implemented in the nitrides. However, the advance of GaN-based laser diodes as inexpensive and highly efficient sources of laser light in the visible and near-UV spectral range will enable new applications with special demands, such as single-mode emission, short-pulse generation or fast modulation. Hence, these applications will drive the need to go beyond the basic Fabry-Perot laser concept.


Laser Diode Bias Voltage Negative Bias Saturable Absorber Pump Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Mirasso, G. Van Tartwijk, E. Hernandez-Garcia, D. Lenstra, S. Lynch, P. Landais, P. Phelan, J. O’Gorman, M. San Miguel, W. Elsasser, Self-pulsating semiconductor lasers: theory and experiment. IEEE J. Quantum Electron. 35(5), 764–770 (1999)CrossRefADSGoogle Scholar
  2. 2.
    M. Ueno, R. Lang, Conditions for self-sustained pulsation and bistability in semiconductor lasers. J. Appl. Phys. 58(4), 1689–1692 (1985)CrossRefADSGoogle Scholar
  3. 3.
    P. Acedo, H. Lamela, S. Garidel, C. Roda, J. Vilcot, G. Carpintero, I. White, K. Williams, M. Thompson, W. Li et al., Spectral characterisation of monolithic modelocked lasers for mm-wave generation and signal processing. Electron. Lett. 42(16), 928–929 (2006)Google Scholar
  4. 4.
    Y. Kawaguchi, Y. Tani, P.O. Vaccaro, S. Ito, H. Kawanishi, Electric field induced carrier sweep-out in tandem InGaN multi-quantum-well self-pulsating laser diodes. Jpn. J. Appl. Phys. 50(2), 020209 (2011)CrossRefADSGoogle Scholar
  5. 5.
    S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, H. Yokoyama, Volumetric optical recording using a 400 nm all-semiconductor picosecond laser. Appl. Phys. Express 3(10), 102501 (2010)CrossRefADSGoogle Scholar
  6. 6.
    T. Miyajima, H. Watanabe, M. Ikeda, H. Yokoyama, Picosecond optical pulse generation from self-pulsating bisectional GaN-based blue-violet laser diodes. Appl. Phys. Lett. 94, 161103 (2009)CrossRefADSGoogle Scholar
  7. 7.
    M. Kneissl, T.L. Paoli, P. Kiesel, D.W. Treat, M. Teepe, N. Miyashita, N.M. Johnson, Two-section InGaN multiple-quantum-well laser diode with integrated electroabsorption modulator. Appl. Phys. Lett. 80(18), 3283 (2002)CrossRefADSGoogle Scholar
  8. 8.
    S. Kono, T. Oki, T. Miyajima, M. Ikeda, 12 W peak-power 10 ps duration optical pulse generation by gain switching of a single-transverse-mode GaInN blue laser diode. Appl. Phys. Lett. 93, 131113 (2008)CrossRefADSGoogle Scholar
  9. 9.
    M. Kuramoto, T. Oki, T. Sugahara, S. Kono, M. Ikeda, H. Yokoyama, Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode. Appl. Phys. Lett. 96, 051102 (2010)CrossRefADSGoogle Scholar
  10. 10.
    H. Watanabe, M. Kuramoto, S. Kono, M. Ikeda, H. Yokoyama, Blue-violet bow-tie self-pulsating laser diode with a peak power of 20W and a pulse energy of 310pJ. Appl. Phys. Express 3, 3–5 (2010)Google Scholar
  11. 11.
    R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, H. Yokoyama, 100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier. Appl. Phys. Lett. 97, 021101 (2010)CrossRefADSGoogle Scholar
  12. 12.
    F. Renner, P. Kiesel, G.H. Döhler, M. Kneissl, C.G. Van de Walle, N.M. Johnson, Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy. Appl. Phys. Lett. 81(3), 490 (2002)CrossRefADSGoogle Scholar
  13. 13.
    P. Kiesel, F. Renner, M. Kneissl, N. Johnson, G. Döhler, Electroabsorption spectroscopy—direct determination of the strong piezoelectric field in InGaN/GaN heterostructure diodes. Physica Status Solidi A 188(1), 131–134 (2001)CrossRefADSGoogle Scholar
  14. 14.
    W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1998)Google Scholar
  15. 15.
    I. Vurgaftman, J. Meyer, in Electron Bandstructure Parameters ed. by J. Piprek. Nitride Semiconductor Devices: Principles and Simulations, chap. 2 (Wiley VCH, Weinheim, 2007), pp. 13–18CrossRefGoogle Scholar
  16. 16.
    STR Group Ltd., Simulator of Light Emitters based on Nitride Semiconductors (SiLENSe).
  17. 17.
    T. Miyajima, S. Kono, H. Watanabe, T. Oki, R. Koda, M. Kuramoto, M. Ikeda, H. Yokoyama, Saturable absorbing dynamics of GaInN multiquantum well structures. Appl. Phys. Lett. 98(17), 171904 (2011)CrossRefADSGoogle Scholar
  18. 18.
    U.T. Schwarz, H. Braun, K. Kojima, Y. Kawakami, S. Nagahama, T. Mukai, Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells. Appl. Phys. Lett. 91(12), 123503 (2007)CrossRefADSGoogle Scholar
  19. 19.
    Y.L. Wong, J.E. Carroll, A travelling-wave rate equation analysis for semiconductor lasers. Solid-State Electron. 30(1), 13–19 (1987)CrossRefADSGoogle Scholar
  20. 20.
    S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices. Jpn. J. Appl. Phys. 36(12A), 1568–1571 (1997)CrossRefADSGoogle Scholar
  21. 21.
    H. Watanabe, T. Miyajima, M. Kuramoto, M. Ikeda, H. Yokoyama, 10-W peak-power picosecond optical pulse generation from a triple section blue-violet self-pulsating laser diode. Appl. Phys. Express 3(5), 052701 (2010)CrossRefADSGoogle Scholar
  22. 22.
    T. Tanaka, T. Kajimura, Frequency control of self-sustained pulsating laser diodes by uniform impurity doping into multiple-quantum-well structures. IEEE Photonics Tech. Lett. 10(1), 48–50 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Fraunhofer Institute for Applied Solid State Physics (IAF)FreiburgGermany

Personalised recommendations