Conclusions and Outlook

Chapter
Part of the Springer Tracts in Modern Physics book series (STMP, volume 245)

Abstract

In this chapter we first summarise our results and afterwards present possible extensions: In general we studied mesoscopic systems with classically chaotic dynamics using semiclassical techniques. On the one hand we confirmed RMT results, on the other hand we considered corrections to the latter results mainly due to Ehrenfest-time effects.

Keywords

Periodic Orbit Chaotic Dynamic Curve Manifold Mesoscopic System Orbit Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brouwer, P.W., Rahav, S.: Phys. Rev. B 74, 075322 (2006)CrossRefADSGoogle Scholar
  2. 2.
    Tian, C., Larkin, A.I.: Phys Rev. B 70, 035305 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Brouwer, P.W., Rahav, S., Tian, C.: Phys. Rev. E 74, 066208 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Brouwer, P.W., Rahav, S.: Phys. Rev. B 74, 085313 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Whitney, R.S., Jacquod, P.: Phys. Rev. Lett. 96, 206804 (2006)CrossRefADSGoogle Scholar
  6. 6.
    Müller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Phys. Rev. E 72, 046207 (2005)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Müller, S.: Periodic-Orbit Approach to Universality in Quantum Chaos. Ph.D. thesis, Universität Duisburg Essen (2005)Google Scholar
  8. 8.
    Tanner, G.: J. Phys. A 33, 3567 (2000)CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    Schanz, H., Smilansky, U.: Proceedings Australian Summer School on Quantum Chaos and Mesoscopics (1999)Google Scholar
  10. 10.
    Hannay, J., deAlmeida, A.O.: J. Phys. A 17, 3429 (1984)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Anderson, P.W.: Phys Rev. 109, 1492 (1958)CrossRefADSGoogle Scholar
  12. 12.
    Wurm, J., Rycerz, A., Adagideli, \(\dot{I.}\), Wimmer, M., Richter, K., Baranger, H.U.: Phys. Rev. Lett. 102, 056806 (2009)Google Scholar
  13. 13.
    Adagideli, \(\dot{\hbox{I.}}\): Phys. Rev. B 68, 233308 (2003)Google Scholar
  14. 14.
    Müller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Phys. Rev. Lett. 93, 014103 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Heusler, S., Müller, S., Braun, P., Haake, F.: Phys. Rev. Lett. 96, 066804 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Sieber, M.: J. Phys A 32, 7679 (1999)CrossRefMATHADSMathSciNetGoogle Scholar
  17. 17.
    Dollinger, T.: Semiclassical Transport and Diffraction Effects in Circular Billiards, diploma thesis, Universität Regensburg, (2009)Google Scholar
  18. 18.
    Březinová, I., Stampfer, C., Wirtz, L., Rotter, S., Burgdörfer, J.: Phys. Rev. B 77, 165321 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Richter, K.: Semiclassical Theory of Mesoscopic Quantum Systems, Springer Tracts in Modern Physics Vol. 161, Berlin (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Universität RegensburgRegensburgGermany

Personalised recommendations