Advertisement

The Initial Data Problem

  • Éric Gourgoulhon
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 846)

Abstract

The problem of solving the constraint equations to get valid initial data for the time evolution is discussed. We focus on two methods based on the conformal decomposition introduced in Chap. 7: the conformal transverse-traceless method and the conformal thin sandwich method. Both methods are illustrated by initial data in Schwarzschild spacetime. Finally, we give a survey of the construction of initial for binary compact objects, which are of major interest in numerical relativity.

Keywords

Black Hole Initial Data Neutron Star Extrinsic Curvature Hamiltonian Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fourès-Bruhat, Y., Choquet-Bruhat, Y.: Sur l’Intégration des Équations de la Relativité Générale. J. Rational Mech. Anal. 5, 951 (1956)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Lichnerowicz, A.: L’intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl. 23, 37 (1944); reprinted in A. Lichnerowicz : Choix d’oeuvres mathématiques, Hermann, Paris (1982), p. 4Google Scholar
  3. 3.
    Choquet-Bruhat, Y.: New elliptic system and global solutions for the constraints equations in general relativity. Commun. Math. Phys. 21, 211 (1971)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    York, J.W.: Mapping onto Solutions of the Gravitational Initial Value Problem. J. Math. Phys. 13, 125 (1972)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    York, J.W.: Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity. J. Math. Phys. 14, 456 (1973)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Ó Murchadha, N., York, J.W.: Initial-value problem of general relativity. I. General formulation and physical interpretation. Phys. Rev. D 10, 428 (1974)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    York, J.W.: Kinematics and dynamics of general relativity. In: Smarr, L.L. (eds) Sources of Gravitational Radiation. pp. 83. Cambridge University Press, Cambridge (1979)Google Scholar
  8. 8.
    York, J.W.: Conformal “thin-sandwich” data for the initial-value problem of general relativity. Phys. Rev. Lett. 82, 1350 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Pfeiffer, H.P., York, J.W.: Extrinsic curvature and the Einstein constraints. Phys. Rev. D 67, 044022 (2003)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Bartnik, R.: Quasi-spherical metrics and prescribed scalar curvature. J. Diff. Geom. 37, 31 (1993)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint equations. Commun. Math. Phys. 231, 529 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Chruściel, P.T., Galloway, G.J., Pollack, D.: Mathematical general relativity: A sampler. Bull. Amer. Math. Soc. 47, 567 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Choquet-Bruhat, Y., York, J.W.: The Cauchy Problem. In: Held, A. (eds) General Relativity and Gravitation, one hundred Years after the Birth of Albert Einstein, Vol. 1, pp. 99. Plenum Press, New York (1980)Google Scholar
  15. 15.
    Cook, G.B.: Initial data for numerical relativity. Living Rev. Relat 3, 5 (2000); http://www.livingreviews.org/lrr-2000-5
  16. 16.
    Pfeiffer, H.P.: The initial value problem in numerical relativity. In: Proceedings Miami Waves Conference 2004. [preprint gr-qc/0412002].Google Scholar
  17. 17.
    Bartnik, R., Isenberg, J.: The Constraint Equations, in Ref. [121], p. 1.Google Scholar
  18. 18.
    Gourgoulhon, E.: Construction of initial data for 3+1 numerical relativity. In: Proceedings of the VII Mexican School on Gravitation and Mathematical Physics, held in Playa del Carmen, Mexico (Nov. 26 - Dec. 2, 2006), J. Phys.: Conf. Ser. 91, 012001 (2007).Google Scholar
  19. 19.
    Alcubierre, M.: Introduction to 3+1 Numerical Relativity. Oxford University Press, Oxford (2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    Baumgarte, T.W., Shapiro, S.L.: Numerical relativity. Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  21. 21.
    Choquet-Bruhat, Y.: General Relativity and Einstein’s Equations. Oxford University Press, New York (2009)Google Scholar
  22. 22.
    York, J.W.: Covariant decompositions of symmetric tensors in the theory of gravitation. Ann. Inst. Henri Poincaré A 21, 319 (1974); available at http://www.numdam.org/item?id=AIHPA_1974__21_4_319_0
  23. 23.
    Lichnerowicz, A.: Sur les équations relativistes de la gravitation, Bulletin de la S.M.F. 80, 237 (1952); available at http://www.numdam.org/item?id=BSMF_1952__80__237_0
  24. 24.
    Cantor, M.: The existence of non-trivial asymptotically flat initial data for vacuum spacetimes. Commun. Math. Phys. 57, 83 (1977)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Maxwell, D.: Initial data for black holes and rough spacetimes. PhD Thesis, University of Washington (2004)Google Scholar
  26. 26.
    Isenberg, J.: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav. 12, 2249 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Dahl, M., Gicquaud, R., Humbert, E.: A limit equation associated to the solvability of the vacuum Einstein constraint equations using the conformal method. preprint arXiv:1012.2188Google Scholar
  28. 28.
    R. Gicquaud and A. Sakovich : A large class of non constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold, preprint arXiv:1012.2246Google Scholar
  29. 29.
    Choquet-Bruhat, Y., Christodoulou, D.: Elliptic systems of \(H_{s,{\varvec{\varDelta} }}\) spaces on manifolds which are Euclidean at infinity. Acta Math. 146, 129 (1981)Google Scholar
  30. 30.
    Choquet-Bruhat, Y., Isenberg, J., York, J.W.: Einstein constraints on asymptotically Euclidean manifolds. Phys. Rev. D 61, 084034 (2000)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    S.M. Carroll : Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley (Pearson Education), San Fransisco (2004) http://preposterousuniverse.com/spacetimeandgeometry/
  32. 32.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973)Google Scholar
  33. 33.
    Straumann, N.: General relavity, with applications to astrophysics. Springer, Berlin (2004)Google Scholar
  34. 34.
    Wald, R.M.: General relativity. University of Chicago Press, Chicago (1984)zbMATHGoogle Scholar
  35. 35.
    Brandt, S., Brügmann, B.: A simple construction of initial data for multiple black holes. Phys. Rev. Lett. 78, 3606 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    Bowen, J.M., York, J.W.: Time-asymmetric initial data for black holes and black-hole collisions. Phys. Rev. D 21, 2047 (1980)ADSCrossRefGoogle Scholar
  37. 37.
    Beig, R., Krammer, W.: Bowen–York tensors. Class. Quantum Grav. 21, S73 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Garat, A., Price, R.H.: Nonexistence of conformally flat slices of the Kerr spacetime. Phys. Rev. D 61, 124011 (2000)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Valiente Kroon, J.A.: Nonexistence of conformally flat slices in Kerr and other stationary spacetimes. Phys. Rev. Lett. 92, 041101 (2004)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Brandt, S.R., Seidel, E.: Evolution of distorted rotating black holes. II. Dynamics and analysis. Phys. Rev. D 52, 870 (1995)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Gleiser, R.J., Nicasio, C.O., Price, R.H., Pullin, J.: Evolving the Bowen–York initial data for spinning black holes. Phys. Rev. D 57, 3401 (1998)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Baierlein, R.F., Sharp, D.H., Wheeler, J.A.: Three-dimensional geometry as carrier of information about time. Phys. Rev. 126, 1864 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, C., DeWitt, B.S. (eds) Relativity, Groups and Topology., pp. 316. Gordon and Breach, New York (1964)Google Scholar
  44. 44.
    Bartnik, R., Fodor, G.: On the restricted validity of the thin sandwich conjecture. Phys. Rev. D 48, 3596 (1993)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Cook, G.B., Pfeiffer, H.P.: Excision boundary conditions for black-hole initial data. Phys. Rev. D 70, 104016 (2004)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Jaramillo, J.L., Gourgoulhon, E., Mena Marugán, G.A.: Inner boundary conditions for black hole initial data derived from isolated horizons. Phys. Rev. D 70, 124036 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    Caudill, M., Cook, G.B., Grigsby, J.D., Pfeiffer, H.P.: Circular orbits and spin in black-hole initial data. Phys. Rev. D 74, 064011 (2006)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Gourgoulhon, E., Jaramillo, J.L.: A 3+1 perspective on null hypersurfaces and isolated horizons. Phys. Rep. 423, 159 (2006)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Matera, K., Baumgarte, T.W., Gourgoulhon, E.: Shells around black holes: the effect of freely specifiable quantities in Einstein’s constraint equations. Phys. Rev. D 77, 024049 (2008)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Vasset, N., Novak, J., Jaramillo, J.L.: Excised black hole spacetimes: Quasilocal horizon formalism applied to the Kerr example. Phys. Rev. D 79, 124010 (2009)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Pfeiffer, H.P., York, J.W.: Uniqueness and Nonuniqueness in the Einstein Constraints. Phys. Rev. Lett. 95, 091101 (2005)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Teukolsky, S.A.: Linearized quadrupole waves in general relativity and the motion of test particles. Phys. Rev. D 26, 745 (1982)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Baumgarte, T.W., Ó Murchadha, N., Pfeiffer, H.P.: Einstein constraints: Uniqueness and non-uniqueness in the conformal thin sandwich approach. Phys. Rev. D 75, 044009 (2007)MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    Walsh, D.: Non-uniqueness in conformal formulations of the Einstein Constraints. Class. Quantum Grav. 24, 1911 (2007)ADSzbMATHCrossRefGoogle Scholar
  55. 55.
    Cordero-Carrión, I., Cerdá-Durán, P., Dimmelmeier, H., Jaramillo, J.L., Novak, J., Gourgoulhon, E.: Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue. Phys. Rev. D 79, 024017 (2009)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Shibata, M., Uryu, K.: Merger of black hole-neutron star binaries: Nonspinning black hole case. Phys. Rev. D 74, 121503(R) (2006)ADSGoogle Scholar
  57. 57.
    York, J.W.: Velocities and momenta in an extended elliptic form of the initial value conditions. Nuovo Cim. B 119, 823 (2004)MathSciNetADSGoogle Scholar
  58. 58.
    Grandclément, P., Gourgoulhon, E., Bonazzola, S.: Binary black holes in circular orbits. II. Numerical methods and first results. Phys. Rev. D 65, 044021 (2002)MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Damour, T., Gourgoulhon, E., Grandclément, P.: Circular orbits of corotating binary black holes: comparison between analytical and numerical results. Phys. Rev. D 66, 024007 (2002)MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    Laguna, P.: Conformal-thin-sandwich initial data for a single boosted or spinning black hole puncture. Phys. Rev. D 69, 104020 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    Blanchet, L.: Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev. Relat. 9, 4 (2006); http://www.livingreviews.org/lrr-2006-4
  62. 62.
    Friedman, J.L., Uryu, K., Shibata, M.: Thermodynamics of binary black holes and neutron stars. Phys. Rev. D 65, 064035 (2002); erratum in Phys. Rev. D 70, 129904(E) (2004).Google Scholar
  63. 63.
    Detweiler, S.: Periodic solutions of the Einstein equations for binary systems. Phys. Rev. D 50, 4929 (1994)MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Gibbons, G.W., Stewart, J.M.: Absence of asymptotically flat solutions of Einstein’s equations which are periodic and empty near infinity. In: Bonnor, W.B., Islam, J.N., MacCallum, M.A.H. (eds) Classical General Relativity., pp. 77. Cambridge University Press, Cambridge (1983)Google Scholar
  65. 65.
    Klein, C.: Binary black hole spacetimes with a helical Killing vector. Phys. Rev. D 70, 124026 (2004)MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Gourgoulhon, E., Grandclément, P., Bonazzola, S.: Binary black holes in circular orbits. I. A global spacetime approach. Phys. Rev. D 65, 044020 (2002)MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    Ansorg, M.: Double-domain spectral method for black hole excision data. Phys. Rev. D 72, 024018 (2005)MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    Ansorg, M.: Multi-Domain spectral method for initial data of arbitrary binaries in general relativity. Class. Quantum Grav. 24, S1 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  69. 69.
    Dain, S.: Trapped surfaces as boundaries for the constraint equations. Class. Quantum Grav. 21, 555 (2004); errata in Class. Quantum Grav. 22, 769 (2005)Google Scholar
  70. 70.
    Dain, S., Jaramillo, J.L., Krishnan, B.: On the existence of initial data containing isolated black holes. Phys.Rev. D 71, 064003 (2005)MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    Jaramillo, J.L., Ansorg, M., Limousin, F.: Numerical implementation of isolated horizon boundary conditions. Phys. Rev. D 75, 024019 (2007)MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    Pfeiffer, H.P., Brown, D.A., Kidder, L.E., Lindblom, L., Lovelace, G., Scheel, M.A.: Reducing orbital eccentricity in binary black hole simulations. Class. Quantum Grav. 24, S59 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  73. 73.
    Grandclément, P. : KADATH: a spectral solver for theoretical physics. J. Comput. Phys. 229, 3334 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  74. 74.
    Blanchet, L.: Innermost circular orbit of binary black holes at the third post-Newtonian approximation. Phys. Rev. D 65, 124009 (2002)MathSciNetADSCrossRefGoogle Scholar
  75. 75.
    Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999)MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Damour, T.: Coalescence of two spinning black holes: An effective one-body approach. Phys. Rev. D 64, 124013 (2001)MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    Lovelace, G.: Reducing spurious gravitational radiation in binary-black-hole simulations by using conformally curved initial data. Class. Quantum Grav. 26, 114002 (2009)MathSciNetADSCrossRefGoogle Scholar
  78. 78.
    Lovelace, G., Owen, R., Pfeiffer, H.P., Chu, T.: Binary-black-hole initial data with nearly extremal spins. Phys. Rev. D 78, 084017 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    Hannam, M.D., Evans, C.R., Cook, G.B., Baumgarte, T.W.: Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasiequilibrium?. Phys. Rev. D 68, 064003 (2003)ADSCrossRefGoogle Scholar
  80. 80.
    Hannam, M.D.: Quasicircular orbits of conformal thin-sandwich puncture binary black holes. Phys. Rev. D 72, 044025 (2005)MathSciNetADSCrossRefGoogle Scholar
  81. 81.
    Baumgarte, T.W.: Innermost stable circular orbit of binary black holes. Phys. Rev. D 62, 024018 (2000)MathSciNetADSCrossRefGoogle Scholar
  82. 82.
    Baker, J.G., Campanelli, M., Lousto, C.O., Takahashi, R.: Modeling gravitational radiation from coalescing binary black holes. Phys. Rev. D 65, 124012 (2002)ADSCrossRefGoogle Scholar
  83. 83.
    Ansorg, M., Brügmann, B., Tichy, W.: Single-domain spectral method for black hole puncture data. Phys. Rev. D 70, 064011 (2004)ADSCrossRefGoogle Scholar
  84. 84.
    Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Gravitational-Wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006)ADSCrossRefGoogle Scholar
  85. 85.
    Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Binary black hole merger dynamics and waveforms. Phys. Rev. D 73, 104002 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    van Meter, J.R., Baker, J.G., Koppitz, M., Choi, D.I.: How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D 73, 124011 (2006)MathSciNetADSCrossRefGoogle Scholar
  87. 87.
    Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)ADSCrossRefGoogle Scholar
  88. 88.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Last orbit of binary black holes. Phys. Rev. D 73, 061501(R) (2006)MathSciNetADSGoogle Scholar
  89. 89.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Spinning-black-hole binaries: The orbital hang-up. Phys. Rev. D 74, 041501(R) (2006)MathSciNetADSGoogle Scholar
  90. 90.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Spin-orbit interactions in black-hole binaries. Phys. Rev. D 74, 084023 (2006)MathSciNetADSCrossRefGoogle Scholar
  91. 91.
    Tichy, W., Brügmann, B., Campanelli, M., Diener, P.: Binary black hole initial data for numerical general relativity based on post-Newtonian data. Phys. Rev. D 67, 064008 (2003)MathSciNetADSCrossRefGoogle Scholar
  92. 92.
    Mundim, B.C., Kelly, B.J., Zlochower, Y., Nakano, H., Campanelli, M.: Hybrid black-hole binary initial data. Class. Quantum Grav. 28, 134003 (2011)MathSciNetADSCrossRefGoogle Scholar
  93. 93.
    Nissanke, S.: Post-Newtonian freely specifiable initial data for binary black holes in numerical relativity. Phys. Rev. D 73, 124002 (2006)ADSCrossRefGoogle Scholar
  94. 94.
    Buonanno, A., Cook, G.B., Pretorius, F.: Inspiral, merger, and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75, 124018 (2007)MathSciNetADSCrossRefGoogle Scholar
  95. 95.
    Buonanno, A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Taracchini, A.: Reducing orbital eccentricity of precessing black-hole binaries. Phys. Rev. D 83, 104034 (2011)ADSCrossRefGoogle Scholar
  96. 96.
    Gourgoulhon, E.: An introduction to relativistic hydrodynamics, in Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars. edited by M. Rieutord & B. Dubrulle, EAS Publications Series 21, EDP Sciences, Les Ulis (2006), p. 43; available at http://arxiv.org/abs/gr-qc/0603009
  97. 97.
    Teukolsky, S.A.: Irrotational binary neutron stars in quasi-equilibrium in general relativity. Astrophys. J. 504, 442 (1998)ADSCrossRefGoogle Scholar
  98. 98.
    Shibata, M.: Relativistic formalism for computation of irrotational binary stars in quasiequilibrium states. Phys. Rev. D 58, 024012 (1998)ADSCrossRefGoogle Scholar
  99. 99.
    Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L., Teukolsky, S.A.: Binary neutron stars in general relativity: Quasiequilibrium models. Phys. Rev. Lett. 79, 1182 (1997)ADSCrossRefGoogle Scholar
  100. 100.
    Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L., Teukolsky, S.A.: General relativistic models of binary neutron stars in quasiequilibrium. Phys. Rev. D 57, 7299 (1998)MathSciNetADSCrossRefGoogle Scholar
  101. 101.
    Bonazzola, S., Gourgoulhon, E., Marck, J.-A.: Numerical models of irrotational binary neutron stars in general relativity. Phys. Rev. Lett. 82, 892 (1999)ADSCrossRefGoogle Scholar
  102. 102.
    Marronetti, P., Mathews, G.J., Wilson, J.R.: Irrotational binary neutron stars in quasiequilibrium. Phys. Rev. D 60, 087301 (1999)ADSCrossRefGoogle Scholar
  103. 103.
    Uryu, K., Eriguchi, Y.: New numerical method for constructing quasiequilibrium sequences of irrotational binary neutron stars in general relativity. Phys. Rev. D 61, 124023 (2000)ADSCrossRefGoogle Scholar
  104. 104.
    Uryu, K., Shibata, M., Eriguchi, Y.: Properties of general relativistic, irrotational binary neutron stars in close quasiequilibrium orbits: Polytropic equations of state. Phys. Rev. D 62, 104015 (2000)ADSCrossRefGoogle Scholar
  105. 105.
    Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A., Bonazzola, S.: Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity: Method and tests. Phys. Rev. D 63, 064029 (2001)Google Scholar
  106. 106.
    Taniguchi, K., Gourgoulhon, E.: Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. III. Identical and different mass stars with \(\gamma=2\). Phys. Rev. D 66, 104019 (2002)Google Scholar
  107. 107.
    Taniguchi, K., Gourgoulhon, E.: Various features of quasiequilibrium sequences of binary neutron stars in general relativity. Phys. Rev. D 68, 124025 (2003)ADSCrossRefGoogle Scholar
  108. 108.
    Taniguchi, K., Shibata, M.: Binary neutron stars in quasi-equilibrium. Astrophys. J. Suppl. Ser. 188, 187 (2010)ADSCrossRefGoogle Scholar
  109. 109.
    Bejger, M., Gondek-Rosińska, D., Gourgoulhon, E., Haensel, P., Taniguchi, K., Zdunik, J.L.: Impact of the nuclear equation of state on the last orbits of binary neutron stars. Astron. Astrophys. 431, 297–306 (2005)ADSCrossRefGoogle Scholar
  110. 110.
    Oechslin, R., Janka, H.-T., Marek, A.: Relativistic neutron star merger simulations with non-zero temperature equations of state I. Variation of binary parameters and equation of state. Astron. Astrophys. 467, 395 (2007)Google Scholar
  111. 111.
    Oechslin, R., Uryu, K., Poghosyan, G., Thielemann, F.K.: The influence of quark matter at high densities on binary neutron star mergers. Mon. Not. Roy. Astron. Soc. 349, 1469 (2004)ADSCrossRefGoogle Scholar
  112. 112.
    Limousin, F., Gondek-Rosińska, D., Gourgoulhon, E.: Last orbits of binary strange quark stars . Phys Rev. D 71, 064012 (2005)ADSCrossRefGoogle Scholar
  113. 113.
    Uryu, K., Limousin, F., Friedman, J.L., Gourgoulhon, E., Shibata, M.: Binary neutron stars: Equilibrium models beyond spatial conformal flatness. Phys. Rev. Lett. 97, 171101 (2006)ADSCrossRefGoogle Scholar
  114. 114.
    Uryu, K., Limousin, F., Friedman, J.L., Gourgoulhon, E., Shibata, M.: Nonconformally flat initial data for binary compact objects. Phys. Rev. D 80, 124004 (2009)ADSCrossRefGoogle Scholar
  115. 115.
    Shibata, M., Uryu, K., Friedman, J.L.: Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits. Phys. Rev. D 70, 044044 (2004); errata in Phys. Rev. D 70, 129901(E) (2004)Google Scholar
  116. 116.
    Damour, T., Nagar, A.: Effective one body description of tidal effects in inspiralling compact binaries. Phys. Rev. D 81, 084016 (2010)ADSCrossRefGoogle Scholar
  117. 117.
    Grandclément, P.: Accurate and realistic initial data for black hole-neutron star binaries. Phys. Rev. D 74, 124002 (2006); erratum in Phys. Rev. D 75, 129903(E) (2007).Google Scholar
  118. 118.
    Taniguchi, K., Baumgarte, T.W., Faber, J.A., Shapiro, S.L.: Quasiequilibrium sequences of black-hole-neutron-star binaries in general relativity. Phys. Rev. D 74, 041502(R) (2006)ADSCrossRefGoogle Scholar
  119. 119.
    Taniguchi, K., Baumgarte, T.W., Faber, J.A., Shapiro, S.L.: Quasiequilibrium black hole-neutron star binaries in general relativity. Phys. Rev. D 75, 084005 (2007)ADSCrossRefGoogle Scholar
  120. 120.
    Tsokaros, A.A., Uryu, K.: Numerical method for binary black hole/neutron star initial data: Code test. Phys. Rev. D 75, 044026 (2007)ADSCrossRefGoogle Scholar
  121. 121.
    Chruściel, P.T., Friedrich, H. (eds): The Einstein equations and the large scale behavior of gravitational fields—50 years of the Cauchy problem in general relativity. Birkhäuser Verlag, Basel (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Éric Gourgoulhon
    • 1
  1. 1.Lab. Univers et Théories (LUTH) UMR 8102 du CNRS, Observatoire de ParisUniversité Paris DiderotMeudonFrance

Personalised recommendations