3+1 Decomposition of Einstein Equation

  • Éric Gourgoulhon
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 846)

Abstract

The fundamental equation for general relativity, the Einstein equation, is decomposed orthogonally with respect to a 3+1 foliation of spacetime. Then we introduce spatial coordinates on the hypersurfaces forming the foliation, thereby introducing the famous shift vector. This enables one to turn the 3+1 Einstein equation into a system of partial-differential equations. This system can be formulated as a Cauchy problem with constraints and we discuss briefly the known existence and uniqueness results regarding it. Finally we discuss the ADM Hamiltonian approach to general relativity, which is based on the 3+1 decomposition.

Keywords

Cauchy Problem Einstein Equation Hamiltonian Formulation Spacelike Hypersurface Shift Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, C., DeWitt, B.S. (eds) Relativity Groups and Topology, pp. 316. Gordon and Breach, New York (1964)Google Scholar
  2. 2.
    Fourés-Bruhat, Y., Choquet-Bruhat, Y.: Sur l’Intégration des Équations de la Relativité Générale. J. Ration. Mech. Anal. 5, 951 (1956)MATHGoogle Scholar
  3. 3.
    Darmois, G.: Les équations de la gravitation einsteinienne, Mémorial des Sciences Mathématiques 25, Gauthier-Villars, Paris (1927)Google Scholar
  4. 4.
    Lichnerowicz, A.: Sur certains problèmes globaux relatifs au système des équations d’Einstein. Hermann, Paris; Actual. Sci. Ind. 833, (1939)Google Scholar
  5. 5.
    Lichnerowicz, A.: L’intégration des équations de la gravitation relativiste et le problème des n corps. J. Math. Pures Appl. 23, 37 (1944); reprinted in Lichnerowicz, A.: Choix d’\(\oe\)uvres mathématiques, p. 4. Hermann, Paris (1982)Google Scholar
  6. 6.
    Fourés-Bruhat, Y., Choquet-Bruhat, Y.: Sur l’intégration des équations d’Einstein. C. R. Acad. Sci. Paris 226, 1071 (1948)MathSciNetMATHGoogle Scholar
  7. 7.
    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: an introduction to current research, p. 227. Wiley, New York (1962) http://arxiv.org/abs/gr-qc/0405109
  8. 8.
    York, J.W.: Velocities and momenta in an extended elliptic form of the initial value conditions. Nuovo Cim. B119, 823 (2004)MathSciNetADSGoogle Scholar
  9. 9.
    Anderson, A., York, J.W.: Hamiltonian time evolution for general relativity. Phys. Rev. Lett. 81, 1154 (1998)MathSciNetADSCrossRefMATHGoogle Scholar
  10. 10.
    Fischer, A.E., Marsden, J.: The Einstein equation of evolution—a geometric approach. J. Math. Phys. 13, 546 (1972)MathSciNetADSCrossRefMATHGoogle Scholar
  11. 11.
    Fischer, A., Marsden, J.: The initial value problem and the dynamical formulation of general relativity. In: Hawking, S.W., Israel, W. (eds) General Relativity: An Einstein Centenary Survey, pp. 138. Cambridge University Press, Cambridge (1979)Google Scholar
  12. 12.
    Wald, R.M.: General relativity. University of Chicago Press, Chicago (1984)MATHGoogle Scholar
  13. 13.
    Courant, R., Hilbert, D.: Methods of mathematical physics; vol. II: partial differential equations. Interscience, New York (1962)MATHGoogle Scholar
  14. 14.
    Knapp, A.M., Walker, E.J., Baumgarte, T.W.: Illustrating stability properties of numerical relativity in electrodynamics. Phys. Rev. D 65, 064031 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Baumgarte, T.W., Shapiro, S.L.: Numerical relativity and compact binaries. Phys. Rep. 376, 41 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    Fourés-Bruhat, Y., (Choquet-Bruhat, Y).: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Mathematica 88, 141 (1952) http://fanfreluche.math.univ-tours.fr/
  17. 17.
    Bartnik, R., Isenberg, J.: The Constraint equations, in Ref. [33], p. 1Google Scholar
  18. 18.
    Choquet-Bruhat, Y., York, J.W.: The Cauchy problem. In: Held, A. (eds) General Relativity and Gravitation one hundred Years after the Birth of Albert Einstein, pp. 99. Plenum Press, New York (1980)Google Scholar
  19. 19.
    Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329 (1969)MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    Klainerman, S., Nicoló, F.: On the local and global aspects of the Cauchy problem in general relativity. Class. Quantum Grav. 16, R73 (1999)ADSCrossRefMATHGoogle Scholar
  21. 21.
    Andersson, L.: The global existence problem in general relativity, in Ref. [33], p. 71Google Scholar
  22. 22.
    Rendall, A.D.: Theorems on existence and global dynamics for the Einstein equations. Living Rev. Relativ. 8, 6 (2005) http://www.livingreviews.org/lrr-2005-6
  23. 23.
    Choquet-Bruhat, Y.: General relativity and Einstein’s equations. Oxford University Press, New York (2009)Google Scholar
  24. 24.
    Dirac, P.A.M.: The theory of gravitation in Hamiltonian form. Proc. Roy. Soc. Lond. A 246, 333 (1958)MathSciNetADSCrossRefMATHGoogle Scholar
  25. 25.
    Dirac, P.A.M.: Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev. 114, 924 (1959)MathSciNetADSCrossRefMATHGoogle Scholar
  26. 26.
    Deser, S.: Some remarks on Dirac’s contributions to general relativity. Int. J. Mod. Phys. A 19S1, 99 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. (N.Y.) 88, 286 (1974)MathSciNetADSCrossRefMATHGoogle Scholar
  28. 28.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973)Google Scholar
  29. 29.
    Poisson, E.: A relativist’s toolkit, the mathematics of black-hole mechanics. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  30. 30.
    Henneaux, M.: Hamiltonian formalism of general relativity, lectures at Institut Henri Poincaré, Paris (2006), http://www.luth.obspm.fr/IHP06/
  31. 31.
    Schäfer, G.: Equations of motion in the ADM formalism, lectures at Institut Henri Poincaré, Paris (2006), http://www.luth.obspm.fr/IHP06/
  32. 32.
    Deruelle, N.: General relativity: a primer, lectures at Institut Henri Poincaré, Paris (2006), http://www.luth.obspm.fr/IHP06/
  33. 33.
    Chruściel, P.T., Friedrich, H. (eds): The Einstein equations and the large scale behavior of gravitational fields—50 years of the Cauchy problem in general relativity. Birkhäuser Verlag, Basel (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Éric Gourgoulhon
    • 1
  1. 1.Lab. Univers et Théories (LUTH) UMR 8102 du CNRS, Observatoire de ParisUniversité Paris DiderotMeudonFrance

Personalised recommendations