Evolution Schemes

  • Éric Gourgoulhon
Part of the Lecture Notes in Physics book series (LNP, volume 846)


Various approaches to evolve forward in time the 3+1 Einstein equations are discussed. After a review of constrained schemes, we focus on free evolution schemes, giving some details about the propagation of the constraints. Among the free evolution schemes, a particular important one is the BSSN scheme, which is presented here in details.


Einstein Equation Bianchi Identity Ricci Tensor Tensor Field Constraint Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stewart, J.M.: The Cauchy problem and the initial boundary value problem in numerical relativity. Class Quantum Grav. 15, 2865 (1998)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Friedrich, H., Rendall, A.: The Cauchy problem for the Einstein equations, in Einstein’s field equations and their physical implications: selected essays in honour of Jürgen Ehlers. In: Schmidt, B.G. (eds) Lecture Notes in Physics 540, pp. 127. Springer, Berlin (2000)Google Scholar
  3. 3.
    Lehner, L.: Numerical relativity: a review. Class. Quantum Grav. 18, R25 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Shinkai, H., Yoneda, G.: Re-formulating the Einstein equations for stable numerical simulations: Formulation problem in numerical relativity, to appear (?) in Progress in Astronomy and Astrophysics (Nova Science Publ.), preprint gr-qc/0209111Google Scholar
  5. 5.
    Shinkai, H.: Introduction to numerical relativity. Lecture Notes for APCTP Winter School on Gravitation and Cosmology, Jan 17–18 Seoul, Korea (2003) available at
  6. 6.
    Baumgarte, T.W., Shapiro, S.L.: Numerical relativity and compact binaries. Phys. Rep. 376, 41 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Lehner, L. and Reula, O.: Status quo and open problems in the numerical construction of spacetimes, in Ref. [85] , p. 205.Google Scholar
  8. 8.
    Alcubierre, M.: Introduction to 3+1 Numerical Relativity. Oxford University Press, Oxford (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity. Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  10. 10.
    Bardeen, J.M., Piran, T.: General relativistic axisymmetric rotating systems: coordinates and equations. Phys. Rep. 96, 206 (1983)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Stark, R.F., Piran, T.: Gravitational-wave emission from rotating gravitational collapse. Phys. Rev. Lett. 55, 891 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    Evans, C.R.: An approach for calculating axisymmetric gravitational collapse. In: Centrella, J. (eds) Dynamical Spacetimes and Numerical Relativity, pp. 3. Cambridge University Press, Cambridge (1986)Google Scholar
  13. 13.
    Evans, C.R.: Enforcing the momentum constraints during axisymmetric spacelike simulations. In: Evans, C.R., Finn, L.S., Hobill, D.W. (eds) Frontiers in Numerical Relativity., pp. 194. Cambridge University Press, Cambridge (1989)Google Scholar
  14. 14.
    Shapiro, S.L., Teukolsky, S.A.: Collisions of relativistic clusters and the formation of black holes. Phys. Rev. D 45, 2739 (1992)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Abrahams, A.M., Cook, G.B., Shapiro, S.L., Teukolsky, S.A.: Solving Einstein’s equations for rotating spacetimes: Evolution of relativistic star clusters. Phys. Rev. D 49, 5153 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Choptuik, M.W., Hirschmann, E.W., Liebling, S.L., Pretorius, F.: An axisymmetric gravitational collapse code. Class. Quantum Grav. 20, 1857 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Rinne, O.: Constrained evolution in axisymmetry and the gravitational collapse of prolate Brill waves. Class. Quantum Grav. 25, 135009 (2008)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Anderson, M., Matzner, R.A.: Extended lifetime in computational evolution of isolated black holes. Found. Phys. 35, 1477 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Bonazzola, S., Gourgoulhon, E., Grandclément, P., Novak, J.: Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates. Phys. Rev. D 70, 104007 (2004)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Cordero-Carrión, I., Cerdá-Durán, P., Dimmelmeier, H., Jaramillo, J.L., Novak, J., Gourgoulhon, E.: Improved constrained scheme for the Einstein equations: an approach to the uniqueness issue. Phys. Rev. D 79, 024017 (2009)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Cordero-Carrión, I., Ibáñez, J.M., Gourgoulhon, E., Jaramillo, J.L., Novak, J.: Mathematical issues in a fully-constrained formulation of Einstein equations. Phys. Rev. D 77, 084007 (2008)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Cordero-Carrión, I., Cerdá-Durán, P., Ibáñez, J.M.: Dynamical spacetimes and gravitational radiation in a fully constrained formulation. J. Phys.: Conf. Ser. 228, 012055 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Cordero-Carrión I., Cerdá-Durán P., and Ibáñez J.M.: Gravitational waves in dynamical spacetimes with matter content in the Fully Constrained Formulation, preprint arXiv:1108.0571Google Scholar
  24. 24.
    Frittelli, S.: Note on the propagation of the constraints in standard 3+1 general relativity. Phys. Rev. D 55, 5992 (1997)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Kidder, L.E., Lindblom, L., Scheel, M.A., Buchman, L.T., Pfeiffer, H.P.: Boundary conditions for the Einstein evolution system. Phys. Rev. D 71, 064020 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Sarbach, O., Tiglio, M.: Boundary conditions for Einstein’s field equations: mathematical and numerical analysis. J. Hyper. Diff. Equat. 2, 839 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Reula O.: Strong Hyperbolicity, lecture at the VII Mexican School on Gravitation and Mathematical Physics (Playa del Carmen, Nov 26–Dec 2, Mexico, 2006);
  28. 28.
    Kidder, L.E., Scheel, M.A., Teukolsky, S.A.: Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations. Phys. Rev. D 64, 064017 (2001)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Frittelli, S., Reula, O.A.: First-order symmetric hyperbolic Einstein equations with arbitrary fixed gauge. Phys. Rev. Lett. 76, 4667 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Anderson, A., York, J.W.: Fixing Einstein’s equations. Phys. Rev. Lett. 82, 4384 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Shibata, M., Nakamura, T.: Evolution of three-dimensional gravitational waves: Harmonic slicing case. Phys. Rev. D 52, 5428 (1995)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Baumgarte, T.W., Shapiro, S.L.: Numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1999)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Nakamura, T., Oohara, K., Kojima, Y.: General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. Suppl. 90, 1 (1987)MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    De Donder, T.: La Gravifique einsteinienne, Gauthier-Villars, Paris (1921).
  35. 35.
    Friedrich, H.: On the hyperbolicity of Einstein’s and other gauge field equations. Commun. Math. Phys. 100, 525 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Garfinkle, D.: Harmonic coordinate method for simulating generic singularities. Phys. Rev. D 65, 044029 (2002)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Gundlach, C., Calabrese, G., Hinder, I., Martí n-García, J.M.: Constraint damping in the Z4 formulation and harmonic gauge. Class. Quantum Grav. 22, 3767 (2005)zbMATHCrossRefGoogle Scholar
  38. 38.
    Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R., Rinne, O.: A new generalized harmonic evolution system. Class. Quantum Grav. 23, S447 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Pretorius, F.: Numerical relativity using a generalized harmonic decomposition. Class. Quantum Grav. 22, 425 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Pretorius, F.: Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Pretorius, F.: Simulation of binary black hole spacetimes with a harmonic evolution scheme. Class. Quantum Grav. 23, S529 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. 42.
    Pretorius, F.: Binary black hole coalescence. In: Colpi, M., Casella, P., Gorini, V., Moschella, U., Possenti, A. (eds) Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, pp. 305. Springer, Dordrecht/Canopus (2009)CrossRefGoogle Scholar
  43. 43.
    Beyer, H., Sarbach, O.: Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s field equations. Phys. Rev. D 70, 104004 (2004)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    Gundlach, C., Martín-García, J.M.: Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions. Phys. Rev. D 74, 024016 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Shibata, M., Baumgarte, T.W., Shapiro, S.L.: Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity. Phys. Rev. D 61, 044012 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    Shibata, M.: Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes. Phys. Rev. D 67, 024033 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    Sekiguchi, Y., Shibata, M.: Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation. Phys. Rev. D 71, 084013 (2005)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Shibata, M., Sekiguchi, Y.: Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities. Phys. Rev. D 71, 024014 (2005)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A., Seidel, E.: Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole. Phys. Rev. D 71, 024035 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    Baiotti, L., Hawke, I., Rezzolla, L., Schnetter, E.: Gravitational-wave emission from rotating gravitational collapse in three dimensions. Phys. Rev. Lett. 94, 131101 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    Baiotti, L., Rezzolla, L.: Challenging the paradigm of singularity excision in gravitational collapse. Phys. Rev. Lett. 97, 141101 (2006)MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    Sekiguchi Y., Shibata M.: Formation of black hole and accretion disk in a massive high-entropy stellar core collapse, Astrophys. J. (in press); preprint arXiv:1009.5303Google Scholar
  53. 53.
    Shibata, M.: Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests. Phys. Rev. D 60, 104052 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    Shibata, M., Uryu, K.: Simulation of merging binary neutron stars in full general relativity: \(\Gamma=2\) case. Phys. Rev. D 61, 064001 (2000)Google Scholar
  55. 55.
    Shibata, M., Uryu, K.: Gravitational waves from the merger of binary neutron stars in a fully general relativistic simulation. Prog. Theor. Phys. 107, 265 (2002)ADSzbMATHCrossRefGoogle Scholar
  56. 56.
    Shibata, M., Taniguchi, K., Uryu, K.: Merger of binary neutron stars of unequal mass in full general relativity. Phys. Rev. D 68, 084020 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    Shibata, M., Taniguchi, K., Uryu, K.: Merger of binary neutron stars with realistic equations of state in full general relativity. Phys. Rev. D 71, 084021 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    Shibata, M., Taniguchi, K.: Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    Baiotti, L., Giacomazzo, B., Rezzolla, L.: Accurate evolutions of inspiralling neutron-star binaries: Prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    Hotokezaka, K., Kyutoku, K., Okawa, H., Shibata, M., Kiuchi, K.: Binary neutron star mergers: Dependence on the nuclear equation of state. Phys. Rev. D 83, 124008 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    Sekiguchi Y., Kiuchi K., Kyutoku K., Shibata M.: Gravitational waves and neutrino emission from the merger of binary neutron stars, Phys. Rev. Lett. 107, 051102 (2011)Google Scholar
  62. 62.
    Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Binary black hole merger dynamics and waveforms. Phys. Rev. D 73, 104002 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    van Meter, J.R., Baker, J.G., Koppitz, M., Choi, D.I.: How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D 73, 124011 (2006)MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Last orbit of binary black holes. Phys. Rev. D 73, 061501(R) (2006)MathSciNetADSGoogle Scholar
  67. 67.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Spinning-black-hole binaries: The orbital hang-up. Phys. Rev. D 74, 041501(R) (2006)MathSciNetADSGoogle Scholar
  68. 68.
    Campanelli, M., Lousto, C.O., Zlochower, Y.: Spin-orbit interactions in black-hole binaries. Phys. Rev. D 74, 084023 (2006)MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Sperhake, U.: Binary black-hole evolutions of excision and puncture data. Phys. Rev. D 76, 104015 (2007)MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    Diener, P., Herrmann, F., Pollney, D., Schnetter, E., Seidel, E., Takahashi, R., Thornburg, J., Ventrella, J.: Accurate evolution of orbiting binary black holes. Phys. Rev. Lett. 96, 121101 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    Brügmann, B., González, J.A., Hannam, M., Husa, S., Sperhake, U., Tichy, W.: Calibration of moving puncture simulations. Phys. Rev. D 77, 024027 (2008)ADSCrossRefGoogle Scholar
  72. 72.
    Marronetti, P., Tichy, W., Brügmann, B., González, J., Hannam, M., Husa, S., Sperhake, U.: Binary black holes on a budget: simulations using workstations. Class. Quantum Grav. 24, S43 (2007)ADSzbMATHCrossRefGoogle Scholar
  73. 73.
    Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P.: Unequal mass binary black hole plunges and gravitational recoil. Class. Quantum Grav. 24, S33 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  74. 74.
    Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P., Matzner, R.A.: Gravitational recoil from spinning binary black hole mergers. Astrophys. J. 661, 430 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    Kyutoku, K., Shibata, M., Taniguchi, K.: Gravitational waves from nonspinning black hole-neutron star binaries: Dependence on equations of state. Phys. Rev. D 82, 044049 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    A. Buonanno : Binary black hole coalescence, in astrophysics of compact objects. AIP Conf. Proc. 968, 307 (2008)Google Scholar
  77. 77.
    Centrella, J.M., Baker, J.G., Kelly, B.J., van Meter, J.R.: Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 82, 3069 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Duez, M.D.: Numerical relativity confronts compact neutron star binaries: a review and status report. Class. Quantum Grav. 27, 114002 (2010)MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    Duez, M.D., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests. Phys. Rev. D 72, 024028 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    Shibata, M., Sekiguchi, Y.: Magnetohydrodynamics in full general relativity: Formulation and tests. Phys. Rev. D 72, 044014 (2005)MathSciNetADSCrossRefGoogle Scholar
  81. 81.
    Shibata, M., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity. Phys. Rev. D 74, 104026 (2006)MathSciNetADSCrossRefGoogle Scholar
  82. 82.
    Giacomazzo, B., Rezzolla, L.: WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics. Class. Quantum Grav. 24, S235 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  83. 83.
    Kiuchi, K., Shibata, M., Yoshida, S.: Evolution of neutron stars with toroidal magnetic fields: Axisymmetric simulation in full general relativity. Phys. Rev. D 78, 024029 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    Kiuchi, K., Yoshida, S., Shibata, M.: Non-axisymmetric instabilities of neutron star with toroidal magnetic fields, Astron. Astrophys. 532, A30 (2011)Google Scholar
  85. 85.
    Chruściel, P.T., Friedrich, H. (eds): The Einstein equations and the large scale behavior of gravitational fields—50 years of the Cauchy problem in general relativity. Birkhäuser Verlag, Basel (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Éric Gourgoulhon
    • 1
  1. 1.Lab. Univers et Théories (LUTH) UMR 8102 du CNRS, Observatoire de ParisUniversité Paris DiderotMeudonFrance

Personalised recommendations