Performance Measurement Framework with Formal Indicator Definitions

  • Aivars Niedritis
  • Laila Niedrite
  • Natalija Kozmina
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 90)


Definition of appropriate measures of organization’s performance should be conducted in a systematic way. In this paper the performance measurement and indicators are discussed not only from the side of management models, but also from the point of view of measurement theories to find out appropriate definitions. In our work we propose a formal specification of indicators. The principles of indicator reformulation from free form indicators to formal requirements are formulated and applied in several examples from performance measures database. The formally defined indicators could be used in the proposed performance measurement framework that covers five-step indicator lifecycle.


performance measurement key performance indicators data warehouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parmenter, D.: Key Performance Indicators: Developing, Implementing, and Using Winning KPIs, 2nd edn. John Wiley & Sons, Inc., Chichester (2010)Google Scholar
  2. 2.
    Harrington, J.H.: Business Process Improvement – The Breakthrough Strategy for Total Quality, Productivity, and Competitiveness. McGraw-Hill, New York (1991)Google Scholar
  3. 3.
    Frank, U., Heise, D., Kattenstroth, H., Schauer, H.: Designing and Utilizing Business Indicator Systems within Enterprise Models - Outline of a Method. In: Loos, P., Nüttgens, M., Turowski, K., Werth, D. (eds.) Modellierung Betrieblicher Informationssysteme (MobIS 2008) - Modellierung zwischen SOA und Compliance Management. LNI, vol. 141, pp. 89–105. Saarbrücken, Germany (2008)Google Scholar
  4. 4.
    Popova, V., Treur, J.: A Specification Language for Organizational Performance Indicators. Applied Intelligence Journal 27(3), 291–301 (2007)CrossRefGoogle Scholar
  5. 5.
    Kaplan, R.S., Norton, D.P.: The Balanced Scorecard. Harvard Business School Press, Boston (1996)Google Scholar
  6. 6.
    Muehlen, M.: Process-driven Management Informations Systems – Combining Data Warehouses and Workflow Technology. In: ICECR-4 (2001)Google Scholar
  7. 7.
    Fenton, N.E., Whitty, R.: Software Quality Assurance and Measurement: A Worldwide Perspective, pp. 1–19. International Thomson Computer Press (1995)Google Scholar
  8. 8.
    Munson, J.: Software Engineering Measurement. Auerbach Publications (2003)Google Scholar
  9. 9.
    McGarry, J., Card, D., Jones, C., et al.: Practical Software Measurement: Objective Information for Decision Makers. Addison-Wesley, Reading (2001)Google Scholar
  10. 10.
    Garcıa, F., Bertoa, M., Calero, C., et al.: Towards a Consistent Terminology for Software Measurement. Information and Software Technology 48(8), 631–644 (2006)CrossRefGoogle Scholar
  11. 11.
    List, B., Machaczek, K.: Towards a Corporate Performance Measurement System. In: Proceedings of the ACM Symposium SAC 2004, pp. 1344–1350. ACM Press, New York (2004)Google Scholar
  12. 12.
    Jarke, M., List, T., Koller, J.: The Challenge of Process Data Warehousing. In: Proceedings of the 26th International Conference VLDB 2000, pp. 473–483 (2000)Google Scholar
  13. 13.
    Kueng, P., Wettstein, T., List, B.: A Holistic Process Performance Analysis through a Process Data Warehouse. In: Proceedings of the 7th American Conference on Information Systems (AMCIS 2001), pp. 349–356 (2001)Google Scholar
  14. 14.
    Bonifati, A., Casati, F., Dayal, U., Shan, M.C.: Warehousing Workflow Data: Challenges and Opportunities. In: Proceedings of the 27th International Conference VLDB 2001, pp. 649–652 (2001)Google Scholar
  15. 15.
    Workflow Management Coalition,Terminology and Glossary, 3rd edn., Document Nr. WFMC-TC-1011, Winchester (1999)Google Scholar
  16. 16.
    Videira, C., Silva, A.R.: Patterns and Metamodel for a Natural-language-based Requirements Specification Language. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 189–194. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Kozmina, N., Niedrite, L., Solodovnikova, D.: A Knowledge-based Method for Transforming Requirements to Conceptual Model of a Data Warehouse. In: Proceedings of the 8th International Baltic Conference on Databases and Informational Systems (DBIS 2008), Estonia, pp. 63–74 (2008)Google Scholar
  18. 18.
    Medvedis, I., Niedrite, L., Niedritis, A., et al.: e-University Initiative: Approach, Solutions and Case Studies. In: Proceedings of the 8th International Baltic Conference on Databases and Information Systems, Estonia, pp. 141–152 (2008)Google Scholar
  19. 19.
    Niedrite, L., Solodovnikova, D., Treimanis, M., Niedritis, A.: The Development Method for Process-Oriented Data Warehouse. In: Mastorakis, N.E. (ed.) WSEAS Transactions on Computer Research, vol. 2(2), pp. 183–190 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aivars Niedritis
    • 1
  • Laila Niedrite
    • 1
  • Natalija Kozmina
    • 1
  1. 1.Faculty of ComputingUniversity of LatviaRiga

Personalised recommendations