Modular Chassis Product Platform Considering Variable Quantities for an Economical Electric Vehicle Production

  • G. Schuh
  • J. Arnoscht
  • S. Rudolf
  • K. Korthals
Conference paper


Due to the dwindling resources of fossil combustibles electric-mobility becomes more and more an alternative to present mobility. Besides this aspect the ecological awareness puts pressure on the automotive industry. Especially in cities and urban areas pollution and noise become an increasing problem.


Product Family Product Platform Rear Axle Product Architecture Front Axle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    UN Department of Economics and Social Affairs, 2005Google Scholar
  2. 2.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung; Methoden und Anwendung, 7. Auflage. Aufl., Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2007.Google Scholar
  3. 3.
    Koller, R., Konstruktionslehre für den Maschinenbau, 4. Aufl., Berlin: Spinger-Verlag, 1998Google Scholar
  4. 4.
    Robertson, D., Ulrich, K., Planning for product platforms, Sloan Management Review, 39/4, pp. 19–31, 1998Google Scholar
  5. 5.
    Corso, M., Muffato, M., Verganti, R., Multi-product Innovation: emerging policies in automotive, motorcycle and earthmoving machinery industries. in Proceedings of the EIASM 4th Product Development Management Conference. 1996. Fontainebleau, pp. 205–218Google Scholar
  6. 6.
    Cai, Y.L., Nee, A.Y.C., Lu, W.F., Platform differentiation plan for platform leverage across market niches, CIRP Annals – Manufacturing Technology, 57/1, pp. 141–144, 2008Google Scholar
  7. 7.
    Fellini, R., Kokkolaras, M., Papalambros, P.Y., Commonality Decisions in Product Family Design, Product Platform and Product Familiy Design – Methods and Applications, T.W. Simpson, Z. Siddique, and J. Jiao, Editors, pp. 157–185, 2006Google Scholar
  8. 8.
    Simpson, T.W., Maier, J.R.A., Mistree, F., Product platform design: method and application, Research in Engineering Design, 13/1, pp. 2–22, 2001Google Scholar
  9. 9.
    Gonzalez-Zugasti, J.P., Otto, K., Baker, J.D., Assessing Value for Product Family Design and Selection. in Proceedings of the 25th Design Automation Conference – 1999 ASME Design Engineering Technical Conferences. 1999. Las Vegas, Nevada, pp. 1–11Google Scholar
  10. 10.
    Dahmus, J.B., Gonzalez-Zugasti, J.P., Otto, K., Modular Product Architecture, Design Studies, 22, pp. 409–424, 2001CrossRefGoogle Scholar
  11. 11.
    Siddique, Z., Common Platform Development: Design for Product Variety, Dissertation Georgia Institute of Technology, Atlanta, 2000Google Scholar
  12. 12.
    Nayak, R.U., Chen, W., Simpson, T.W., A variation-based methodology for product family design. in ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2000. Baltimore, Maryland, pp. 65–81Google Scholar
  13. 13.
    Dahmus, J.B., Gonzalez-Zugasti, J.P., Otto, K., Modular Product Architecture, Design Studies, 22, pp. 409–424, 2001CrossRefGoogle Scholar
  14. 14.
    Simpson, T.W., Siddique, Z., Jiao, J., Product Platform and Product Family Design – Methods and Applications, New York: Springer Science + Business Media, 2006CrossRefGoogle Scholar
  15. 15.
    Heißing, B., Ersoy, M., Fahrwerkhandbuch, Vieweg, 2007Google Scholar
  16. 16.
    Krauser, D.:Methodik zur Merkmalsbeschreibung technischer Gegenstände. Dissertation. TU Berlin, 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany

Personalised recommendations