Automated Approach to Exchange Energy Information

  • J. Schlechtendahl
  • P. Eberspächer
  • S. Schrems
  • P. Sekler
  • A. Verl
  • E. Abele
Conference paper


Optimizing the product, the supply chain, the production process chain and steps as well as the structure and components of manufacturing systems can all contribute to resource and energy efficient production. It has to be kept in mind, though, that these strategies yield an “average optimization”. The operation in an energy optimal state is not considered.

In this paper results from the research group ECOMATION are presented, describing how energy information necessary to generate energy control loops on different levels in the production process can be provided automatically in different environments. The energy information can either be integrated in the control infrastructure and used in machine controls for real-time decisions or combined with modelling tools for creating energy prediction simulation.


Energy Consumption Machine Tool Usage Scenario Energy Information Machine Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the German Research Foundation for funding the presented work in the project FOR1088 “ECOMATION”.


  1. 1.
    Umweltdaten Deutschland. Nachhaltig wirtschaften, natürliche Ressourcen und Umwelt schonen. Ausgabe 2007. Umweltbundesamt, Dessau, 2007.Google Scholar
  2. 2.
    Gutowski, T.; Dahmus, J.; Thiriez, A.: Electrical Energy Requirements for Manufacturing Processes, Proceedings of the 13th CIRP International Conference on Life Cycle Engineering, Leuven, May 31st–June 2nd 2006Google Scholar
  3. 3.
    Brecher, C.; Herfs, W.; Heyers, C.; Klein, W.; Triebs, J.; Beck, E.; Dorn, T.: Ressourceneffizienz von Werkzeugmaschinen im Fokus der Forschung, wt Werkstattstechnik online, Vol. 100, Issue 7/8, pp. 559–564, Springer-VDI-Verlag GmbH & Co. KG, Düsseldorf, 2010Google Scholar
  4. 4.
    Dietmair, A.; Eberspaecher, P.; Verl, A.: Predictive Simulation for Model Based Energy Consumption Optimisation in Manufacturing System and Machine Control, Proceedings of the FAIM 2009 Conference, Teesside, UK, 2009Google Scholar
  5. 5.
    Verl, A.; Westkämper E.; Abele, E.; Dietmair, A.; Schlechtendahl, J.; Friedrich, J.; Haag, H.; Schrems, S.; (2011): Architecture for Multilevel Monitoring and Control of Energy Consumption: CIRP LCE 2011, Braunschweig, Mai. 2011Google Scholar
  6. 6.
    Dietmair, A., Haag, H., Böck, J., Rahäuser, R. (2010): Model based energy efficiency optimization for planning and Control, Third International Conference on Eco-Efficiency, Egmond aan See, NetherlandsGoogle Scholar
  7. 7.
    Bittencourt, J.; Landgraf, G.; Bonefeld, R., Schmitt, R.; Pavim, A.: Model-based Monitoring of Machine Tools Energy Consumption: Sustainable Production for Resource Efficiency and Ecomobility, ICMC, International Chemnitz Manufacturing Colloquium, 2010; Berichte aus dem IWU, Nr. 54, S. 673–680, 2010Google Scholar
  8. 8.
    Abele, E.; Dervisopoulos, M.; Kuhrke, B.: Bedeutung und Herausforderungen der Lebenszyklusanalyse am Beispiel Werkzeugmaschine. In: Schweiger, S. (Hrsg.): Lebenszykluskosten optimieren. Gabler Verlag, Wiesbaden, S. 51–79, 2008Google Scholar
  9. 9.
    van der Vlist, Eric: XML Schema, 1. Ausgabe, O’Reilly and Associates, Inc., Sebastopol, CA, USA, 2002Google Scholar
  10. 10.
    PROFIBUS Nutzerorganisation e.V. (2010): PI White Paper: The PROFIenergy Profile, pp.10–11, Karlsruhe, Germany.Google Scholar
  11. 11.
    SERCOS International e.V., (2011): Draft SERCOS Energy, SERCOS International e.V., Süssen, Germany.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Schlechtendahl
    • P. Eberspächer
      • 1
    • S. Schrems
      • 1
    • P. Sekler
      • 1
    • A. Verl
      • 1
    • E. Abele
      • 2
    1. 1.Institute for Control Engineering of Machine Tools and Manufacturing UnitUniversity of StuttgartStuttgartGermany
    2. 2.Department of Production Management, Technology and Machine ToolsTU DarmstadtDarmstadtGermany (Deutschland)

    Personalised recommendations