Economical and Function-Oriented Manufacturing of Cylinder Running Surfaces of Internal Combustion Engines

  • B. Karpuschewski
  • H.-J. Pieper
  • F. Welzel
Conference paper


In the wake of increasing cost pressures in the manufacturing of internal combustion engines and in consideration of increasing emission limits for these combustion engines investigations regarding alternative technologies for the efficient manufacturing of performance-optimized cylinder running surfaces were carried out by the Institute of Manufacturing Technology and Quality Management. The microstructure of these surfaces and the subsequent surface integrity are in the focus of considerations. Using tribological analysis of the mechanical running-in behavior of cylinder running surfaces conclusions will be drawn on the impact of the last honing step in the production of the engine. These investigations are carried out in terms of a possible conditioning of tribotechnical systems in their production and the concomitant reduction of friction and wear-intensive running-in processes. In this regard alternative finishing operations, such as metal-forming processes, are investigated. Further aims include the exploration and establishment of energy-efficient and robust methods for generating geometrically defined and not communicating lubricant storage as a substitution of the established laser structuring.


Wear Rate Internal Combustion Engine Engine Test Bench Bearing Strength Maximum Compressive Residual Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Powertrain-Studie von IAV Tochter Consulting4Drive (C4D), 2010Google Scholar
  2. 2.
    Hamilton, D. B.; Walowit, J.A.; Allen, C.M.: A Theory of Lubrication by Microaspereties. ASME J. Basic Eng., 88(1), pp. 177–185Google Scholar
  3. 3.
    Denkena, B.; Kästner, J.; Knoll, G.; Brandt, S.; Bach, F.-W.; Drößler, B.; Relthmeier, E.; Bretschneider, M.: Mikrostrukturierung funktionaler Oberflächen. Auslegung, Fertigung und Charakterisierung von Mikrostrukturen zur tribologischen Funktionalisierung von Oberflächen, wt Werkstattstechnik online Jahrgang 98 (2008) H.6 S.486-497Google Scholar
  4. 4.
    Nanbu, T., Ren, N., Yasuda, Y., Zhu, D., Wang, Q. J., “Microtextures in Concentrated Conformal-Contact Lubrication: Effects of Texture Bottom Shape and Surface Relative Motion,” Tribology Letters, 29(3), pp. 241–252, (2008)CrossRefGoogle Scholar
  5. 5.
    Etsion, I., Kligerman, Y., and Halperin, G., 1999, “Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces,” Tribol. Trans., Vol. 42, pp. 511–516. [ISI]CrossRefGoogle Scholar
  6. 6.
    Klink, U.; Flores, G.: Laser-Strukturierung von Zylinderlaufbahnen. 9. Internationales Braunschweiger Feinbearbeitungskolloquium, 1999Google Scholar
  7. 7.
    Abeln, T.: Laserstrukturierung – Verbesserung der tribologischen Eigenschaften von Oberflächen. VDI Berichte Nr. 1810, 2003Google Scholar
  8. 8.
    Karrer, E.: Untersuchungen zum Reibungsverhalten und Ölverbrauch der Kolbengruppe von Verbrennungsmotoren. Dissertation, RWTH Aachen, 2009Google Scholar
  9. 9.
    Lensch, G.: Oberflächenbearbeitung mittels Nd: YAG Hochleistungslasern und speziellen Strahlwerkzeugen, insbesondere für die Material-Innenbearbeitung in Zylindern. Rennsport und Serie – Gemeinsamkeiten und gegenseitige Beeinflussung, Expert-Verlag, 2003Google Scholar
  10. 10.
    Nanbu, T., Ren, N., Yasuda, Y., Zhu, D., Wang, Q. J.: Microtextures in Concentrated Conformal-Contact Lubrication: Effects of Texture Bottom Shape and Surface Relative Motion. Tribology Letters, 29(3), pp. 241–252, (2008)CrossRefGoogle Scholar
  11. 11.
    Akkurt, A.: Comparison of Roller Burnishing Method with other Hole Surface Finishing Processes applied on AISI 304 Austenitic Stainless Steel. Journal of Materials Engineering and Performance, Aug. 2010Google Scholar
  12. 12.
    Pöhlmann, K.: Mechanical mixing during running-in using a fully formulated engine oil with and without dedicated AW components. 17th International Colloquium Tribology 2010 Esslingen, 610–616Google Scholar
  13. 13.
    Scherge, M.; Gervé, A.; Berlet, P.; Kopnarski, M.; Oechsner, H.; Scheib, M.: Tribomutation von Werkstoffoberflächen im Motorenbau am Beispiel des Zylinderzwickels 2. Abschlussbericht Vorhaben Nr. 716, FVV, Heft 811, 2005Google Scholar
  14. 14.
    Berlet, P.: Einfluss spanender Endbearbeitungen mit geometrisch unbestimmten Schneiden auf tribologische Funktionsflächen im Motorenbau sowie auf Reibung und Verschleiß. Dissertation Universität Kassel, 2009Google Scholar
  15. 15.
    Kragelski, I. V.; Dobycin, M. N.; Kombalov, V. S.: Grundlagen der Berechnung von Reibung und Verschleiß. VEB Verlag Technik, Berlin, 1982Google Scholar
  16. 16.
    Shakhvorostov, D.; Pinto, H.; Pyzalla, A.; Enders, S.; Pöhlmann, K.; Scherge, M.: Struktur-, Härte- und Spannungsmessung von ölgeschmierten Metall-Tribokontakten. DGM-Tagung, Fürth, 2004Google Scholar
  17. 17.
    Bartel, D.; Bobach, L.; Deters, L.: Versagenskriterien für Motorengleitlager bei transienter thermo-elastischer Beanspruchung. FVV-Forschungsheft 769–2, 2003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Manufacturing Technology and Quality ManagementUniversity MagdeburgMagdeburgGermany

Personalised recommendations