Achieving Energy Efficient Process Chains in Sheet Metal Forming

  • J. Schönherr
Conference paper


Energy and resource efficiency is a pressing issue for technological markets in the twenty-first century. In the field of production technology, the development of energy and resource efficient processes and process chains occupies a leading position. In order to overcome these challenges, sustainable methods and standards have to be developed. Moreover, the implementation of these methods with the help of a planning tool for professional users is necessary. This paper presents a new procedure for the evaluation of processes and process chains with regard to energy and resource efficiency. The core of the procedure is to balance and to evaluate the existing material and energy flows. Furthermore, the implementation of the balancing models and calculation rules into a user-friendly tool for process chain improvement and design is demonstrated. The procedure is explained and validated using press hardening process chains as an example. The main objectives are to identify the recommended energy efficient process chain from a range of possible process chain variants and to derive proposals for technical improvements. However, the fundamental part for a holistic examination of press hardening process chains is the comprehensive analysis of the present situation. Thus, the individual process elements like raw material, electric energy or forming tools of each process step are systematically identified and classified in a techno-ecological model. Additionally, the cause-effect influences within the process chain are revealed and technological limitations are identified. Based on this information, the material and energy demands of each process are defined by using a factorial analysis, calculations or estimations under selected constraints. The hierarchical structure of the model allows the combination of individual process balances to a process chain balance. Thereby the evaluation of process chains in terms of energy and resource efficiency is possible. As a result, the procedure provides the user with a tool kit, which offers the possibility for a systematically analysis, the detection of improvements and the definition of design parameters.


Life Cycle Assessment Process Step Process Element Sheet Thickness Process Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Ministry for Science and the Fine Arts (SMWK) of the State of Saxony for their financial support of the work which was funded by the European Fund for Regional Development (EFRE) as well as with State funds made available by the Free State of Saxony.


  1. 1.
    Petermann, J.: Sichere Energie im 21. Jahrhundert. Hamburg: Hoffmann und Campe Verlag, 2006Google Scholar
  2. 2.
  3. 3.
    Europäischen Kommission – Onlinedienst Eurostat: Energetischer Endverbrauch nach Sektor (tsdpc320),, Luxemburg, 2010
  4. 4.
    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.: Energieeffizienz in der Produktion – Untersuchungen zum Handlungs- und Forschungsbedarf, Studie, 2008Google Scholar
  5. 5.
    Tzscheutschler, P.; Nickel, M.; Wernicke, I.: Energieverbrauch in Deutschland. In: BWK-Das Energie-Fachmagazin, Vol. 61, Issue 6, 2009Google Scholar
  6. 6.
    Waltenberger, G.: Energiemanagement in der Industrie. Köln: Josef Eul Verlag, 2005Google Scholar
  7. 7.
    KfW Bankengruppe (Publ.): Hemmnisse und Erfolgsfaktoren von Energieeffizienz in Unternehmen. Frankfurt am Main, 2005Google Scholar
  8. 8.
    Bush, E.; Nipkow, J.; Gasser, S.: Der typische Haushalt-Stromverbrauch. In: Bulletin SEV/VSE, Issue 19, 2007Google Scholar
  9. 9.
    Glavic, P.; Lukman, R.: Review of sustainability terms and their definitions. In: Journal of Cleaner Production, Vol. 15, Issue 18, 2007Google Scholar
  10. 10.
    Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (Hrsg.): GreenTech made in Germany 2.0 – Umwelttechnologieatlas für Deutschland. München: Verlag Franz Vahlen GmbH, 2009Google Scholar
  11. 11.
    VDMA – German Engineering Federation (Hrsg.): Green Production Technologies. Deutsche Standards Editionen, Köln, 2010Google Scholar
  12. 12.
    VDMA – German Engineering Federation (Hrsg.): Unternehmenserfolg durch Energieeffizienz. F.a.Z.-Institut, Frankfurt am Main, 2008Google Scholar
  13. 13.
    Roßmann, M.: Infrastrukturen für die energieeffiziente Produktion. Kongress für ressourceneffiziente Produktion, 25th February 2009, LeipzigGoogle Scholar
  14. 14.
    Theis, St.: Total Energy Management – Hintergründe und Beispiele. In: Nachhaltige Produktion, Vol. 1, Issue 3, 2010Google Scholar
  15. 15.
    Doth, K.-A.: Fokus Druckluft – Innovative Kompressortechnologie. Energieeffizienz in der Produktion, 13th–14th October 2009, MünchenGoogle Scholar
  16. 16.
    International Energy Agency (IEA): World Energy Outlook 2008. Paris, 2008Google Scholar
  17. 17.
    Rudolph, M.; Wagner, U.: Energieanwendungstechnik – Wege und Techniken zur effizienteren Energienutzung. Berlin: Springer-Verlag, 2008Google Scholar
  18. 18.
    Karbasian, H.; Tekkaya, A. E.: A review on hot stamping. In: Journal of Materials Processing Technology, Vol. 210, Issue 15, p. 2103–2118, 2010CrossRefGoogle Scholar
  19. 19.
    Kolleck, R.; Aspacher, J.; Veit, R.: Efficiency of hot forming processes. 2nd International Conference of Hot Sheet metal Forming of High-Performance Steel (CHS2), 15th–17th June 2009, LuleaGoogle Scholar
  20. 20.
    Neugebauer, R.; Schieck, F.: Active media-based form hardening of tubes and profiles. In: Production Engineering, Vol. 4, Issue 4, p. 385–390, 2010CrossRefGoogle Scholar
  21. 21.
    Feuser, P.; Schweiker, T.: Tailored Tempered Parts – Einsatzpotentiale und funktionale Untersuchungen. 5. Erlanger Workshop Warmblechumformung, 8th December 2010, ErlangenGoogle Scholar
  22. 22.
    Lee, M.-G.; Kim, A,-J.; Han, H.-N.; et al.: Application of hot press forming process to manufacture an automotive part and its finite element analysis considering phase transformation plasticity. In: International Journal of Mechanical Sciences, Vol. 51, Issue 11–12, p. 888–898, 2009CrossRefGoogle Scholar
  23. 23.
    Bundesministerium des Innern: Handbuch für Organisationsuntersuchungen und Personalbedarfsermittlung. Online database, Berlin, 2007Google Scholar
  24. 24.
    Bokranz, R.; Landau, K.: Produktivitätsmanagement von Arbeitssystemen – MTM Handbuch. Deutsche MTM-Vereinigung e.V. (Hrsg.), Stuttgart: Schäffer-Poeschel Verlag, 2006Google Scholar
  25. 25.
    Streim, H.: Heuristische Lösungsverfahren. Versuch einer Begriffsbestimmung. In: Mathematical Methods of Operations Research, Vol. 19, Issue 5, p. 143–162, 1975zbMATHCrossRefGoogle Scholar
  26. 26.
    Müller, J.: Arbeitsmethoden der Technikwissenschaften – Systematik, Heuristik, Kreativität. Berlin; Heidelberg: Springer-Verlag, 1990CrossRefGoogle Scholar
  27. 27.
    Benito E. F.; D. C. Whybark: Multiple Criteria ABC Analysis. In: International Journal of Operations & Production Management, Vol. 6, Issue 3, 1986Google Scholar
  28. 28.
    Gottschalk, G.; Marr, I. L.: Systems theory in analysis – Definitions and interpretations in the basic terms of systems theory. In: Talanta, Vol. 20, Issue 9, p. 811–827, 1973CrossRefGoogle Scholar
  29. 29.
    Göschel, A.; Sterzing, A.; Schönherr, J.: Systembetrachtungen von Prozessketten der Blechwarmumformung in Hinblick auf Energie- und Ressourceneffizienz. 1. Internationales Kolloquium des Exzellenclusters eniPROD, 24th–25th June 2010, ChemnitzGoogle Scholar
  30. 30.
    Zaytoon, J.; Villermain-Lecolier, G.: Two methods for the engineering of manufacturing systems. In: Control Engineering Practice, Vol. 5, Issue 2, p. 185–198, 1997CrossRefGoogle Scholar
  31. 31.
    Vogel-Heuser, B.: Systems software engineering. München: Oldenbourg-Industrieverlag, 2003zbMATHGoogle Scholar
  32. 32.
    Kiener, S.: Produktions-Management. 8th edition, München; Wien: Oldenbourg, 2006Google Scholar
  33. 33.
    Rogalla, Ch.; Engemann, M.; Butterbrodt, D.; et al.: Umweltmanagementsysteme. 11th update, Kissing : WEKA-Media, 2004Google Scholar
  34. 34.
    Kramer, M.; Brauweiler, J.; Helling, K.: Internationales Umweltmanagement – Umweltmanagementinstrumente und -systeme. Vol. 2, Wiesbaden: Gabler Verlag, 2003CrossRefGoogle Scholar
  35. 35.
    Schwister, K.: Taschenbuch der Umwelttechnik. München; Wien: Fachbuchverlag Leipzig, 2003Google Scholar
  36. 36.
    Poll, D.: Industrie sieht Energie-Effizienz als Wettbewerbsfaktor. In: Energie-Effizienz Magazin, Vol. 2, p. 6–7, 2009Google Scholar
  37. 37.
    So, H.; Hoffmann, R.; Golle, R.: Schneiden presshärtbarer Stähle. 5. Erlanger Workshop Warmblechumformung, 8th December 2010, ErlangenGoogle Scholar
  38. 38.
    Picas, I.; Hernández, R.; Casellas, D.; et al.: Cold cutting of microstructurally tailored hot formed components. 2nd International Conference of Hot Sheet metal Forming of High-Performance Steel (CHS2), 15th–17th June 2009, LuleaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fraunhofer Institute for Machine Tools and Forming Technology IWUTU ChemnitzChemnitzGermany

Personalised recommendations