Development, Simulation-Based Design and Metal Forming Production of Patient-Individual Hip Cups

  • B.-A. Behrens
  • N. Weigel
  • S. B. Escobar
  • C. Stukenborg-Colsman
  • M. Lerch
  • I. Nolte
  • P. Wefstaedt
  • A. Bouguecha
Conference paper


The present project is based on previous gait analysis studies of normal human walking and finite element (FE) simulations of the strain-adaptive bone remodeling in the pelvis. For the FE simulation, hip joint forces were derived from the multi-body simulation (MBS) of the gait cycle of a human test subject with normal walking speed (1.1 m/s). An overall bone mass loss of 1.4% can be expected for the pelvis after total hip arthroplasty (THA) according to the calculation. On the basis of the final density distribution in the acetabulum a proximal migration of the implant can be suggested.

With patient-individual hip cups bone resorption and subsequent cup migration is not assumed to appear to such an extent. Until now, patient-individual hip prostheses are mainly used for severe deformities of the pelvis or in case of tumors. This is due to the cost-effective production of the single components using rapid prototyping technologies, for example.

In the framework of this project, an innovative concept based on numerical calculations is developed, so that besides the specific preconditions of medical engineering the cost advantages of large-scale sheet metal forming can be combined with the individuality of piece production. Sheet metal forming is predestined for this, if only for the production of a high quantity of the same component.


Bone Mass Loss Normal Walking Speed Retro Reflective Marker Inverse Dynamic Simulation Gait Analysis Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study is based on the framework of the Collaborative Research Center 599 “Sustainable degradable and permanent implants out of metallic and ceramic materials” and is a part of the subprojects D6 and D13. The authors would like to thank the German Research Foundation (DFG) for the financial support.


  1. 1.
    Garcia-Cimbrelo E, Az-Martin A, Madero R, Munera L (2000) Loosening of the cup after low-friction arthroplasty in patients with acetabular protrusion: The importance of the position of the cup. Journal of Bone and Joint Surgery Br. 82:108–115CrossRefGoogle Scholar
  2. 2.
    Behrens B-A, El-Galy I, Wager C, Schrödter J, Olle P, Betancur Escobar S, Weigel N, Bouguecha A (2011) Aktuelle Forschungsergebnisse am Institut für Umformtechnik und Umformmaschinen, Tagungsband des 20. Umformtechnisches Kolloquium Hannover 2011: Umformtechnik – Innovation aus Industrie und Wissenschaft, S. 35–51, Garbsen, Februar 2011Google Scholar
  3. 3.
  4. 4.
    Bergmann G, Deuretbacher G, Heller MO, Graichen F, Rohlmann A, Strauss J and Duda GN (2001) Hip contact forces and gait patterns from routine activities. Journal of Biomechanics 34:859–871CrossRefGoogle Scholar
  5. 5.
    Orthoload, 2011.
  6. 6.
    Bouguecha A, Elgaly I, Stukenborg-Colsman C, Lerch M, Nolte I, Wefstaedt P, Matthias T, Behrens B-A (2010) Numerical investigations of the strain-adaptive bone remodelling in the prosthetic pelvis. IFMBE Proceedings 29:562–565CrossRefGoogle Scholar
  7. 7.
    Zäh M-F (2006): Wirtschaftliche Fertigung mit Rapid-Technologien: Anwender Leitfaden zur Auswahl geeigneter Verfahren. Carl Hanser Verlag, München/WienGoogle Scholar
  8. 8.
    Jaiswal PK., Aston WJ, Grimer RJ, Abudu A, Carter S, Blunn G, Briggs TW, Cannon S (2008): Peri-acetabular resection and endoprosthetic reconstruction for tumours of the acetabulum. Journal of Bone and Joint Surgery Br. 90:1222–1227CrossRefGoogle Scholar
  9. 9.
    Meichsner TP (2008): Tool-in-Tool® Innovative und wandlungsfähige Großwerkzeuge für den Karosseriebau. 19. Umformtechnisches Kolloquium Hannover 2008, Umformtechnik – Ein Wirtschaftszweig mit PotentialGoogle Scholar
  10. 10.
    Hirt G, Ziegler S, Bambach M (2008): Recent Developments in Incremental Sheet Forming for Prototype and Small Series. Symposium “Current State and Future Trends of Metal Forming Technology in Automobile Industries”, 27.02.2008, Nagoya, Japan, 69–80Google Scholar
  11. 11.
    Zäh M-F, Lindemann R, Reichwald U (2006): Individualisierte Produkte – Komplexität beherrschen in Entwicklung und Produktion. Springer Verlag Berlin Heidelberg, BerlinGoogle Scholar
  12. 12.
    Neugebauer R, Schieck F (2009): Hydro forming at elevated temperatures. Hwang Y-M; National Sun Yat-Sen University -NSYSU-, Kaohsiung: Tube Hydroforming Technology: September 6–9, 2009, Kaohsiung, Taiwan Kaohsiung, International Conference on Tube Hydroforming (TUBEHYDRO)Google Scholar
  13. 13.
    Groche P, Ertugrul M (2009): Hydroforming of Laser Welded Sheet Stringers. Sheet Metal 2009, 13th International Conference on Sheet Metal, 6–8 April 2009Google Scholar
  14. 14.
    Park JG, Kim YS (2009): Analysis of Forming Limit in Tube Hydroforming Process. Hwang Y-M: National Sun Yat-Sen University -NSYSU-, Kaohsiung: Tube Hydroforming Technology: September 6–9, 2009, Kaohsiung, Taiwan Kaohsiung, International Conference on Tube Hydroforming (TUBEHYDRO)Google Scholar
  15. 15.
    Mangas A, Legorburu A, Vadillo L, Gutiérrez M, Paar U (2008): Analysis of parameter influence in sheet hot metal gas forming for boron alloyed steels. Proceedings Iddrg 2008, International Deep Drawing Research Group, Best in Class Stamping, Olofström, Sweden, June 16–18, 2008Google Scholar
  16. 16.
    Laszlo G (2007): Blechumformung mit elastischer Matrize. Gummi Fasern Kunststoffe 60: 484–488Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B.-A. Behrens
    • 1
  • N. Weigel
    • 1
  • S. B. Escobar
    • 1
  • C. Stukenborg-Colsman
    • 1
  • M. Lerch
    • 1
  • I. Nolte
    • 2
  • P. Wefstaedt
    • 3
  • A. Bouguecha
    1. 1.Institute of Metal Forming and Metal Forming MachinesLeibniz Universität HannoverGarbsenGermany
    2. 2.Department of Orthopaedic SurgeryHannover Medical SchoolHannoverGermany
    3. 3.Small Animal ClinicUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany

    Personalised recommendations