Production System with Respect for Variable Quantities for an Economical Electric Vehicle Production

  • G. Schuh
  • J. Arnoscht
  • C. Nee
  • B. Schittny
Conference paper


The increasing amount of traffic in modern mega cities as well as the scarcity of oil makes the mobility of the future a social core problem. The awareness of emissions and environmental friendliness attract major interest in electric mobility. Electric vehicles are in direct competition to conventional powered cars, but high prices lead to a very reserve acceptance and market diffusion. Companies need to build up competencies to develop and produce electric vehicles which are attractive for customers; potentials lie in a complete purpose-oriented redesign according to the specification of electric mobility. An integrated product and process development helps to tap the full potential in terms of cost and value-oriented production. New production processes bundled in a production system need to be identified to reduce production cost, enabling e-mobility to compete with conventional powered cars.


Topology Optimization Electric Vehicle Production Quantity Product Architecture Electric Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Elkington, J.: Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environmental Quality Management 8 (1) (1998) S. 37–51CrossRefGoogle Scholar
  2. 2.
    Kleinhans, C.: Die Zukunft der individuellen Mobilität. Automobil Industrie 212 (2010) S. 6–11Google Scholar
  3. 3.
    Seiwert, M.: Überfälliger Schwenk. WirtschaftsWoche 4 (2011) S. 42–45Google Scholar
  4. 4.
    Kampker, A., Nee, C.: StreetScooter: Mobilität im Spannungsfeld zwischen Ökonomie und Ökologie. München 2011Google Scholar
  5. 5.
    Malorny, C.: Beispiellose Herausforderung. Automobiltechnische Zeitschrift 2 (2011) S. 160Google Scholar
  6. 6.
    McKinsey, WZL der RWTH Aachen: Boost! Transform the powertrain value chain - a portfolio challenge: Studie von McKinsey und WZL der RWTH Aachen 2011Google Scholar
  7. 7.
    o. V.: Welche Chancen haben Elektrofahrzeuge in Deutschland? Nürnberg: Studie der Puls Marktforschung GmbH 2009Google Scholar
  8. 8.
    Kampker, A., Burggräf, P., Deutskens, C.: Produktionsstrukturen für Komponenten künftiger Elektrofahrzeuge. Automobiltechnische Zeitschrift Produktion 2 (2010) S. 48–53Google Scholar
  9. 9.
    Ernst&Young: European Automotive Survey: Studie von Ernst&Young 2009Google Scholar
  10. 10.
    Capps, R.: The Good Enough Revolution: When Cheap and Simple Is Just Fine. Wired Magazine 17–09 (2009)Google Scholar
  11. 11.
    Kano, N.: Attractive Quality and Must-be Quality. Journal of the Japanese Society for Quality Control Nr. 4 (1984) S. 39–48MathSciNetGoogle Scholar
  12. 12.
    o. V.: World Urbanization Prospects: The 2005 Revision. New York: Studie United Nations Department of Economics and Social Affairs/Population Divison 2006Google Scholar
  13. 13.
    Bundesministeriums für Verkehr, B. u. S. B.: Mobilität in Deutschland: Studie des BMVBS 2008Google Scholar
  14. 14.
    Hensley, R., Knupfer, S., Pinner, D.: Electrifying cars: How three industries will evolve. McKinsey Quarterly Nr. 3 (2009) S. 87–96Google Scholar
  15. 15.
    Book, M., Mosquet, X. et al.: The Comeback of the Electric Car? How Real, How Soon, and What Must Happen Next.: Studie der Boston Consulting Group Inc. 2009Google Scholar
  16. 16.
    Bock, C., Zimmer, M.: Vom Exoten zur Massenanwendung. Automobil Industrie 212 (2010) S. 92–94Google Scholar
  17. 17.
    Kampker, A., Gulden, A., Deutskens, C.: Kostenpotenziale in der Montage modular aufgebauter Elektrofahrzeuge. Automobiltechnische Zeitschrift 4 (2010) S. 258–263Google Scholar
  18. 18.
    Gies, S.: Herausforderungen der Elektromobilität auf Basis technischer und strategischer Analysen. Bonn: Erster Deutscher Elektro-Mobil Kongress am 16.-17. Juni 2009 2009Google Scholar
  19. 19.
    Rother, F.: Grün kann auch sexy sein. WirtschaftsWoche 18 (2.5.2011) (2011) S. 12Google Scholar
  20. 20.
    Schuh, G., Lenders, M. et al.: Effizienter innovieren mit Produktbaukästen. Aachen: Studie vom WZL der RWTH Aachen 2010Google Scholar
  21. 21.
    Dyckhoff, H., Spengler, T. S.: Produktionswirtschaft. Berlin u.a.: Springer 2010CrossRefGoogle Scholar
  22. 22.
    Becker, H.: Darwins Gesetz in der Automobilindustrie. Berlin, Heidelberg: Springer 2010CrossRefGoogle Scholar
  23. 23.
    Kalt, G.: Das Auto von morgen: einfach und clever - Das Elektroauto eröffnet neue Chancen in der Fahrzeugarchitektur. Innovationsmanager Heft 13 (März 2011) (2011) S. 25Google Scholar
  24. 24.
    Ulrich, K.: The role of Product Architecute in the Manufacturing Firm. Research Policy 24 (3) (1995) S. 419Google Scholar
  25. 25.
    Pedersen, C., Allinger, P.: Industrial Implementation and Applications of Topology Optimization and Future Needs IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials 137 (Part 6) (2006) S. 229–238Google Scholar
  26. 26.
    Eversheim, W., Schuh, G.: Integrierte Produkt- und Prozessgestaltung. Berlin, Heidelberg: Springer 2005CrossRefGoogle Scholar
  27. 27.
    Kurczewski, N.: How Tata Built the Nano for Less. Last Access: (24.04.2011) (2009)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany

Personalised recommendations