Fiber-Reinforced Plastics Enable New Prospects for Minimal Invasive Devices and Interventions

  • C. Brecher
  • M. Emonts
  • A. Schütte
  • A. Brack
Conference paper


Since 20years, minimal invasive interventions help to realize successful treatments with minimal trauma for the patients. The medical devices that are used for minimal invasive interventions need to have several outstanding properties to realize all their functions in combination with the required small dimensions. Therefore, a high specific mechanical stiffness and strength, defined chemical, electrical and magnetic properties, as well as biocompatibility and visibility for different imaging methods have to be realized by the used materials. The Gold Standard materials for such minimal invasive devices are metals and special alloys as well as biocompatible plastics. These isotropic materials are limited in the performance of the listed requirements. Fiber-reinforced plastics (FRP) offer the possibility to face these requirements by the combination of different fiber and matrix systems in combination with special additives, so customized anisotropic materials can be designed directly for the intended usage. Especially for patient-friendly interventions under MRI control fiber-reinforced plastics are unrivaled to other materials. For the manufacturing of such miniaturized medical devices made of FRP, the Fraunhofer IPT develops production processes like a continuous and automated micro-pultrusion and micro-pullwinding process to ensure reproducible and high quality products with customized properties.

This paper shows the successful development, the production processes and the material properties of fiber-reinforced guidewires, needles and catheters. These devices have outstanding mechanical properties and allow safe interventions in MRI for the first time. Caused by the continuous production process, the length of the devices can be freely defined with diameters of under 500m at the same time. Furthermore, these miniaturized profiles can be manufactured with more than one lumen for the integration of additional functionality. Also the contrast for visibility in X-ray and MRI can be exactly adjusted by additives as the material itself causes no annoying artifact.


Fiber Orientation Minimal Invasive Surgery Fiber Volume Puncture Needle Polymer Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brecher, C.; Kölzer,P.; Schmitz, S.; Lange, S.: Von der Idee bis zur Serie – Punktionsnadeln aus Kohlenstofffaser verstärkten Kunststoffen. 8. Internationale AVK-TV Tagung, Baden-Baden, 27.-29.09.2005Google Scholar
  2. 2.
    Brecher, C.; Schütte, A.: Neue Werkstoffe für die Magnet-Resonanz-Tomographie – Faserverbundtechnische Führungsdrähte und Katheter, Kunststoffe Medical Tagung, Fellbach, 17./18.06.2008Google Scholar
  3. 3.
    CTM GmbH: CTM Compositleitfaden. Schleswig, 2008. FirmenschriftGoogle Scholar
  4. 4.
    EPTA (European Pultrusion Technology Association): Pultrusion., 20.04.2011
  5. 5.
    Lange, S.; Weck, M.: Faserverbundtechnologie in der Medizintechnik. In: Altmann Systemengineering Kunststofftechnik, Rosenheim: 2. Medizinaltechnik Forum 2002. Spitzingsee, 2002, S.1-26Google Scholar
  6. 6.
    Lange, S.: Miniaturisierung des Strangziehverfahrens am Beispiel der Herstellung von Kanülen aus kohlenstofffaserverstärktem Kunststoff. ISBN: 3-8322-4117-5, Shaker-Verlag, Aachen, 2005Google Scholar
  7. 7.
    –2011 Mayo Foundation for Medical Education and Research:, 20.04.2011
  8. 8.
    Neitzel, M.; Mitschang, P.: Handbuch Verbundwerkstoffe, ISBN: 3-446-22041-0, Carl Hanser Verlag, München, 2004Google Scholar
  9. 9.
    Neizel, M.; Krämer, N.; Schütte, A.; Schnackenburg, B.; Krüger, S.; Kelm, M.; Günther, R.W.; Kühl, H.P.; Krombach, G.A.: Magnetic Resonance Imaging of the Cardiac Venous System and Magnetic Resonance-Guided Intubation of the Coronary Sinus in Swine – A Feasibility Study; Investigative Radiology, Volume 45, Number 8, August 2010Google Scholar
  10. 10.
    Schmitt, R.; König, N.; Depiereux, F.: Messen auf kleinstem Raum - Faseroptische Miniatursensoren für Kavitäten und Bohrungen. In: Qualität und Sicherheit. 53. Jg., 2008, Nr.7, S. 50–52Google Scholar
  11. 11.
    Schmitz, S.: Strangziehen von MR-sicheren Führungsdrähten aus Faserverbundkunststoffen. In: Ergebnisse aus der Produktionstechnik, WZL RWTH Aachen, Fraunhofer Institut für Produktionstechnologie (IPT). Apprimus-Verlag, Aachen, 2010Google Scholar
  12. 12.
    Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden. 2. Auflage, ISBN 978-3-540-72189-5, Springer, 2007Google Scholar
  13. 13.
    Schütte, A.; Brecher, C.; Steyer, M.; Krüger, S.; Krombach, G.: New material for magnetic resonance imaging (MRI) – fiber-reinforced guide wires and catheters for minimal invasive interventions. World Congress on Medical Physics and Biomedical Engineering, Munich 07.-12.09.2009, Springer, ISBN: 978-3-642-03897-6, 2009Google Scholar
  14. 14.
    Tzifa, A.; Krombach, G.A.; Krämer, N.; Krüger, S.; Schütte, A.; von Walter, M.; Schaeffter, T; Qureshi, S.; Krasemann, T.; Rosenthal, E.; Schwartz, C.A.; Varma, G.; Buhl, A.; Kohlmeier, A.; Bücker, A.; Günther, R.W.; Razavi, R.: Magnetic Resonance-Guided Cardiac Interventions Using Magnetic Resonance - Compatible Devices: A Preclinical Study and First-in-Man Congenital Interventions; Circulations: Cardiovascular Interventions; ISSN: 1941-7640; 2010Google Scholar
  15. 15.
    Tong, L.; Mouritz, A.P.; Bannister, M.K.: 3D Fibre-Reinforced Polymer Composites. Elsevier, London, 2002Google Scholar
  16. 16.
    Wintermantel, E.; Ha, S.-W.: Medizintechnik. Life Science Engineering. 4. Auflage, Springer. Berlin, 2008Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fraunhofer-Institute for Production Technology IPTRWTH Aachen UniversityAachenGermany

Personalised recommendations