Polyamide 12: Carbon Nanotube Composite Material Under the Aspect of Future Application as Balloon Catheter Material

  • M. Ghahremanpour
  • G. Lorenz
  • T. Wörsching
  • M. Bogner
  • I. Maier
  • M. Detert
  • J. Sägebarth
  • H. Sandmaier
Conference paper


Balloon catheters are a common tool used in modern microvasive surgery like angioplasty. A problem during balloon dilatation is longitudinal growth, because of the danger of lesions due to shearing forces. Therefore a modified composite material with anisotropic mechanical properties, which rather inflates radially than longitudinally, would be interesting for the application in balloon catheter manufacturing. Multi-walled carbon nanotubes (MWNTs) represent a nanomaterial with a high aspect ratio tubular crystal structure with diameters in the nanometer range and fiber lengths typically in the range of a few microns. They exhibit high elasticity in combination with high mechanical strength and therefore represent an interesting material for the anisotropic reinforcement of polymer-based composite thin films. Therefore we first simulated the micromechanical properties of Polyamide 12-MWNT composite material variants by variation of MWNT concentration and nanofiber alignment with the semi-analytical mean field method. Then in a second step we performed experimental studies, in which we processed commercial Polyamide 12-MWNT composite masterbatch material by extrusion and fabricated tensile test specimens via injection molding and blow film extrusion. The specimens were finally tested in uniaxial tensile tests and the performance of mechanical reinforcement with regard to elastic moduli and yield point was evaluated. Although our results show, that already relative low amounts of MWNTs do have a considerable influence on the mechanical properties of composite materials and anisotropy of blown films, other technological processing strategies than pure melt mixing by extrusion, which may lead to a better interfacial bonding between the carbon nanotubes and the polymer matrix should be considered.


Injection Molding Yield Strain Uniaxial Tensile Strain Nanoparticle Volume Concentration Composite Material Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Ministry for science, research and art of Baden-Wuerttemberg for the financial support of this work.


  1. 1.
    Grüntzig A, Hopff K (1974) Perkutane Rekanalisation chronischer arterieller Verschlüsse mit einem neuen Dilatationskatheter. Modifikation der Dottertechnik. Dtsch Med Wochenschr 99:2502–2510CrossRefGoogle Scholar
  2. 2.
    Matsumoto AH, Barth KH, Selby JB Jr, Tegtmeyer CJ. (1993) Peripheral angioplasty balloon technology. Cardiovasc Intervent Radiol. 16(3):135–43.CrossRefGoogle Scholar
  3. 3.
    Niten H. Singh, Peter A. Schneider (2011) Balloon Angioplasty Catheters, In: Wesley S. Moore, MD, and Samuel S. Ahn, MD, FACS, Editor(s), Endovascular Surgery (Fourth Edition), W.B. Saunders, Philadelphia, 2011, Pages 71–80, ISBN 978-1-4160-6208-0Google Scholar
  4. 4.
    Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature 354, 56–58.CrossRefGoogle Scholar
  5. 5.
    A. Krüger, (2007) Neue Kohlenstoffmaterialien, Teubner Verlag, ISBN 978-3-519-00510-0Google Scholar
  6. 6.
    M. Weisenberger, R. Andrews and T. Rantell, (2007), Carbon nanotube polymer composites: recent developments in mechanical properties, Phys Proper Polym Handbook pp. 585–598Google Scholar
  7. 7.
    Digimat is developed by e-Xstream engineering, (Luxembourg). Further information is found on the of company homepage:
  8. 8.
    Eschelby, J. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. Lond., 376–396.Google Scholar
  9. 9.
    Mori, T., Tanaka, K. (1973). Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. Mater., 21 (571–574)Google Scholar
  10. 10.
    Guo, Z.X. (2007) Multiscale Materials Modelling – Fundamentals and Applications, CRC and Woodhead Publishing, Cambridge, ISBN: 978-0-849-39110-1Google Scholar
  11. 11.
    Thostenson, E. T. & Chou, T.-W. (2003) On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D: Appl. Phys. 36, 573–582.CrossRefGoogle Scholar
  12. 12.
    Scarpa F, Adhikari S (2008) A mechanical equivalence for the Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes J. Phys. D: Appl. Phys. 41 085306Google Scholar
  13. 13.
    Yu, M.-F. et al. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640CrossRefGoogle Scholar
  14. 14.
    Fisher, F. T., Bradshaw, R. D. & Brinson, L. C. (2003) Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63, 1689–1703CrossRefGoogle Scholar
  15. 15.
    EMS-Grivory Grilamid L25 (Polyamide 12) Material DatasheetGoogle Scholar
  16. 16.
    Nanocyl NC7000 (MWNT) Material DatasheetGoogle Scholar
  17. 17.
    P. Potschke, A.R. Bhattacharyya, A. Janke and H. Goering (2003), Melt mixing of polycarbonate/multi-wall carbon nanotube composites, Compos Interf 10 (4–5), pp. 389–404CrossRefGoogle Scholar
  18. 18.
    R. Andrews, D. Jacques, M. Minot and T. Rantell, (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 287, pp. 395–403CrossRefGoogle Scholar
  19. 19.
    J.N. Coleman, M. Cadek, K.P. Ryan, A. Fonseca, J.B. Nagy, W.J. Blau., M. S. Ferreira (2006) Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling, Polymer 47 (26), pp. 8556–8561Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Ghahremanpour
    • G. Lorenz
      • 1
    • T. Wörsching
      • 1
    • M. Bogner
      • 1
    • I. Maier
      • 1
    • M. Detert
      • 2
    • J. Sägebarth
      • 3
    • H. Sandmaier
      • 4
    1. 1.Institute of Industrial Manufacturing and Management (IFF)University of StuttgartStuttgartGermany
    2. 2.Applied Chemistry DepartmentUniversity of Applied Science ReutlingenReutlingenGermany
    3. 3.Ensinger GmbHNufringenGermany
    4. 4.Coperion GmbHStuttgartGermany

    Personalised recommendations