Square Foot Manufacturing: A New Approach for Desktop-Sized Reconfigurable Machine Tools

  • J. P. Wulfsberg
  • P. Kohrs
  • S. Grimske
  • B. Röhlig
Conference paper


The Square Foot Manufacturing (SFM) concept, an extension to Desktop Manufacturing concepts, describes a novel approach to the design of production facilities for the manufacture of micro parts. Although machine tools based on Desktop Manufacturing concepts are appropriate to produce small parts, they are not widely used, mostly due to their specialization for determined fields of application. To create a higher acceptance and user benefit SFM offers, with its changeability, the possibility to rapidly adapt a machine tool system to a certain task. SFM is composed of function-integrating modules which are connected with mechanical interfaces that enable a quick configuration of the required setting. This modular manner allows for the realisation of not only workpiece-specific manufacturing systems, but also a production which is designed according to the batch size. The paper describes the procedure for designing component-specific Square Foot Factories starting from a demonstration workpiece, via structuring of the machining areas and production layout, configuration and positioning of the machine tools through to processing. The basic concept of SFM, the prototypes of its main modules, a flexure based feed unit and a mechanical interface, as well as the findings of the first processing analyses are presented.


Machine Tool Base Plate Machine Operation Piezoelectric Actuator Ultra Precision Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lehmann, J (2008) Kombinierte multifunktionale Arbeitsräume zur Restrukturierung der Mikroproduktion, Dissertation, Shaker Verlag, AachenGoogle Scholar
  2. 2.
    ElMaraghy, HA, Nyhuis, P, Zäh, MF, Wiendahl, H-H, Duffie, N, Brieke, M (2007) Changeable Manufacturing – Classification, Design and Operation, Ann CIRP, 56/2:783–809CrossRefGoogle Scholar
  3. 3.
    Wulfsberg, JP, Redlich, T, Kohrs, P (2010) Square Foot Manufacturing: a new production concept for Micro Manufacturing, Prod Eng Res Dev, 4/1:75–83CrossRefGoogle Scholar
  4. 4.
    Nyhuis, P, Heinen, T, Reinhart, G, Rimpau, C,. Abele, E, Wörn, A. (2008) Wandlungsfähige Produktionssysteme – Theoretischer Hintergrund zur Wandlungsfähigkeit von Produktionssystemen, wt Werkstattstechnik Vol. 98, pp. 85–91, Springer-VDI-Verlag, DüsseldorfGoogle Scholar
  5. 5.
    Wulfsberg, JP (2009) Machine Tool Design for a Higher Changeability, in: 3rd International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2009), Herbert Utz Verlag, MünchenGoogle Scholar
  6. 6.
    Wurst, K-H, Heisel, U, Kircher, C (2006) (Re)konfigurierbare Werkzeugmaschinen – notwendige Grundlage für eine flexible Produktion, wt Werkstatttechnik online, 96/5:257–265Google Scholar
  7. 7.
    Wörn, A (2009) Ein Beitrag zur Gestaltung mechanischer Modulschnittstellen für rekonfigurierbare Mehrtechnologie-Werkzeugmaschinen, Dissertation, Shaker Verlag AachenGoogle Scholar
  8. 8.
    Rothenhofer, G, Slocum, A, Bosworth, W (2009) An Adjustable Kinematic Coupling for Use in Machine Tools with Tight Structural Loop, Proceedings of the 9th euspen International Conference, San Sebastian, 1:240–243Google Scholar
  9. 9.
    Hoffmann, S, Kohrs, P, Wulfsberg, JP (2010) Square Foot Manufacturing – Mechanical Interface, Proceedings of the 10th euspen International Conference, Delft, 2:128–131Google Scholar
  10. 10.
    Hale, LC, Slocum, AH (2001), Optimal design techniques for kinematic couplings, Precision Engineering, 25:114–127CrossRefGoogle Scholar
  11. 11.
    Kohrs, P, Hoffmann, S, Wulfsberg, JP (2010) Implementation of a Flexure Based Feed Unit for the Square Foot Manufacturing Concept, Proceedings of the 10th euspen International Conference, Delft, 2:91–94Google Scholar
  12. 12.
    Aurich, JC, Engmann, J, Schueler, GM, Haberland, R (2009), Micro grinding tool for manufacture of complex structures in brittle materials, Ann CIRP – Manufacturing Technology, 58:311–314Google Scholar
  13. 13.
    Schueler, GM, Engmann, J, Marx, T, Haberland, R, Aurich, JC, (2009), Micro Structuring of Biocompatible Titanium-Alloys with Ultra-small Micro-End Mills, Proceedings of the 9th euspen International Conference, San Sebastian, 2:435–438Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. P. Wulfsberg
    • 1
  • P. Kohrs
    • 1
  • S. Grimske
    • B. Röhlig
      • 1
    1. 1.Institute of Production Engineering Helmut-Schmidt-UniversityUniversity of the Federal Armed Forces HamburgHamburgGermany

    Personalised recommendations